STUDIES REGARDING THE FOOD SAFETY MANAGEMENT SYSTEM IMPLEMENTATION IN PRODUCTION OF WINE GRAPES

Georgeta BELENIUC¹, Constantin Băducă CÂMPEANU², Liliana MIRON¹, Claudia ŞTEFAN³, Jose PARDO⁴

¹University Ovidius Constanta, 124 Mamaia, Romania. georgetabelen@yahoo.com ²USAMV Craiova, 13 Al. I. Cuza, Craiova, Romania. cbaduca@yahoo.com ³ASAS Bucharest, Romania ⁴University La Mancha, Agrario Faculty, Spain

Corresponding author email: georgetabelen@yahoo.com

Abstract:

The wines quality and safety are depending of the raw materials quality and safety, respectively black and white grapes. These two requirements (quality and safety) were arise from the need to protect consumers and are found both in EU Directions and National Legislation. In the technology of wine grapes production it can be applied a HACCP system which allows for the identification of the key elements from this process which can affect the grapes quality and safety. HACCP is the abbreviation for the English expression "Hazard Analysis and Critical Control Points". Using the HACCP system, the microbiological, chemical and physical risks existing in the wine grapes production technology are identified, in order to find the CCPs (Critical Control Points). In order to keep under control the technology of wine grapes production a single CCP-1 was identified: Integrated plant protection, with two significant hazards: a) the attack of fungi, insects and mites; b) the pesticides and heavy metals residues. Our studies formulate the good hygiene requirements and work procedures that have to be fulfilled by each company specialized in the wine grapes production.

Key words: CCP, HACCP, hazard, residues

INTRODUCTION

HACCP, is an acronym derived from English:"Hazard Analysis And Critical Control Points" and this is a systematic method to identify, assess and control significant hazards associated with plant and animal origin food (Pardo et al., 2005). This is designed to anticipate and control problems before they happen. It provides the most effective and sufficient way to ensure that food products are safe. The great calitologist J. Juran, 1999 said "We have to open eyes to ensure quality and food safety, if we want to live decently". Hygienic-sanitary quality is the essential condition for a food to be consumed by humans. Consumers always want the food at their disposal to be safe in terms of hygiene and sanitary quality so as to cause no illness (Mencinicopschi and Raba 2005). Hygienic quality is influenced by: - microorganisms and parasites; - pollution by: antibiotic residues in animal products, food additives, heavy metals, radioactivity, pesticides, organic substances (dioxins) and - other toxic substances: allergenic, cyanogen, antimetabolites etc.; -

852 transposed in Romania by HG 924/2004, article 5, paragraph 1, states: "Food business operators must implement and maintain a permanent procedure or procedures based on HACCP principles". In this case the white or black grapes can contain mycotoxins, pesticides and heavy metals residues above the permissible limits, being very dangerous for human health. During the technological flow of grapes producing, the hygiene rules should be respected, for does not lead to loss of product hygienic quality. Food safety management systems like ISO 22000:2005 and Hazard Analysis and Critical Control Point (HACCP) can assure the wine grapes safety by preventing potential hazard at the process source points. Using the HACCP system, we tried to identify the microbiological, chemical and physical hazards existing in the produced grapes technology, in order to indicate the CCPs (Critical Control Points) for the products hygienic quality.

natural induced toxicity by: toxic plants,

mycotoxins etc (Boboc, 2010). EC Regulation

MATERIAL AND METHOD

The studies were developed in a vine plantation according to the flow diagram described in Figure 1. For each process step was performed the risk analysis, in order to identify the biological, chemical and physical hazards correlated with the product and process and also the preventive actions and control measures which are necessary to keep under control these hazards (table 1). In order to establish the Critical Control Points in all steps of the technological flow of wine grapes production, where it's possible to implement specific control measures regarding food safety, it was applied the CCP decision tree (recommended by Codex). The control of each CCP, according HACCP principles are planned in a document named the HACCP plan (Table 3). The establishing and implementation of the control measures are shown by specific records. All researches and observations were made in a private company which owns vine plantations and vinification line. Each transfer of wine grapes from the farms to vinification line are accompanied by an analysis bulletin, issued by an approved laboratory.

RESULTS AND DISCUSSIONS

The technological flow of white and black grapes is shown in Figure 1. In researches it was checked each step from the technological flow of white and black wine grapes (Figure 1) in order to identify potential hazards such as: biological, chemical and physical hazards.

Figure 1. The technological flow of white and black wine grapes

All these hazards (Table 1) were identified by using the "decision tree" recommended by Codex Alimentarius. Each food safety hazard has been assessed according with the severity of possible adverse health effects and their appearing probability. By using the CCP decision tree (Table 2) only one CCP was identified in the technological flow of white and black wine grapes, which is focused to keep under the control the step 9 "Integrated plants protection". The Critical Control Point is a point, step, or procedure where the hazard that's associated with the food can be prevented, eliminated or reduced to acceptable levels.

Due en et eu	11 1	Duranting a stimul / Control more state			
Process step	Hazard *B and *C - unidentified	Preventive actions/Control measures			
1 Cuts of vine	*E incorrect cuts	Visual inspection cutters training: checking seissors			
	*B and *C unidentified	visual inspection, cutters training, checking seissors			
2 Cutting shallow roots	*E-Incorrect cutting	Visual inspection cutters training checking			
2. Cutting shanow roots	shallow roots	instruments			
	*B and *C - unidentified				
3 Leading vine shoots	*E-Incorrect leading	Avoid strangulation through a hinding strings too			
5.Dedding vine shoots	vine shoots	tight: cutters training			
	*B and *C - unidentified	-			
4 The green works	*F- Overdose fertilises	Making accurate and timely the works in green:			
and operations		checking scissors knives penknives operator			
und operations		training; visual inspection			
	*B and *C - unidentified	-			
5. The soil works		Making accurate and timely ground work for:			
	*F- Incorrect soil works	maintenance and keeping the humus in soil, nutrient			
		accessibility, activation of chemical and biological			
		processes in the soil and weeds destroying.			
	*B Affecting vines by	Setting recipes and time of herbicide; Uniform			
6. Use of herbicides in	incorrect herbicide usage	distribution of herbicides and avoiding contact with			
plantations		the leaves.			
	*C-unidentified	-			
	*F- Overdose of	Limiting doses to a minimum; respect the			
	herbicides	manufacturer's instructions for treatments; operator's			
		training.			
	*B and *C - unidentified	-			
7. Vine plantations	*F- Overdose fertilises	Use of rational fertilization to avoid the dangers of			
fertilization		polluting products and the environment; Knowing the			
		soil level of nutrients supply and annual			
		consumption; Extensive use of organic fertilizers and			
		concent			
8 Vine plantations					
irrigation					
	*B- Attack by fungi,	The fruit health maintaining; Combined treatments;			
9. Integrated	insects and spider mites	Direct visual inspection of the field.			
vine plants protection	*C- Ineffective chemical	Treatments at the optimum time when is most			
	control	effective; Choices based on efficacy, mode of action,			
		side effects, the reshuffle. Active substance content;			
		manufacturer's instructions checking; operator			
	*E Orientering en	training; suppliers selection.			
	"F- Overdosing of pasticides	application fruit waste environmental damage etc			
10 Harvest timing	underdosing of pesticides	application, fuit waste, environmental damage, etc			
11 Harvesting technique	*B- Microbial	Equipment hygiene harvested grape antimicrobial			
11. mar results teeningue	contamination in	nrotection			
	mechanical harvesting	Prototion			
	application				
	*B- Microbial	Hygiene vehicles maintenance: Drivers training:			
12. Grapes transport	contamination	Visual inspection			
- T - T	*C-unidentified				
	*F grapes crushing	Respect the limit of the load; Visual inspection.			
		Training pickers			

Table 1. Hazard analysis in the technological flow of white and black wine grapes

*B= biohazard; *C= chemical hazard; *F= physical hazard

The HACCP Plan (Table 3) is one of the most important document from food safety management system, which contains the main information necessary in order to implement the control measures and keep under control the identified CCPs.

	Hazard	Decision tree questions				
Process step		Q1- there are preventive measures to prevent the risk of identified hazards?	Q2- stage is specially designed for eliminating / reducing the possibilities of developing a potential hazard	Q3- there is the Possibility of contamination due to a potential hazard till the acceptable level?	Q4- can a later stage to eliminate a potential hazard identified / to reduce possibility the occurrence of a potential hazard to an acceptable level?	
9. Integrated vine plants protection CCP-1	 Attack by fungi, insects and spider mites; Overdosing or underdosing of pesticides 	yes	yes	No	no	CCP-1

Table 2. CCP determination during processing (in according with the decision tree)

Table 3. HACCP Plan for wine grapes production

Stage	Significant hazard	CCP no. n	Control measures	Critical limits	Monitoring				~ .
					Method	Respon- sable	Frequentcy	records	actions
Pest	a. Attack by	CCP	a. Specific	a. Over	a. ELISA	head farm	Before	Register	Preventative
and	fungi, insects	-1	laboratory	2µg/kg;	test; HPLC	laboratory	harvest if	for pest	health
disease	and spider		tests for	b. Heavy	b. gas		the attack	and	maintenance
control	mites;		mycotoxins;	metals	chroma-		is high	disease	in
	-		b. Analysis	presence	tography or		Ũ	control	plantations .
	b. Overdosing		of heavy	(As<0.2,	spectrophoto			Analises	Personal
	or underdosing		metals	Cd<0.01,	metry			register	training
	of pesticides .		residues and	Cu<1, Pb<0.3	-			Ū.	0
	-		pesticides	mg/l); organic					
			presence	pesticides: 2-					
			1	10 ppm					

CONCLUSIONS

The HACCP system implemented in any company with wine grapes production activity, is a preventive self-control, whose principles can be applied to all food producing sectors.

Our studies formulate the good hygiene requirements and work procedures that have to be fulfilled by each company specialized in the wine grapes production.

In order to keep under control the wine grapes production technology one CCP was identified, which is focused on "Pest and disease control".

The grapes should be sound without rotten parts, otherwise oxidative and microbial contamination can rapidly develop.

Harvesting should be conducted with greatest possible care and efficient disease management system should be applied.

Pesticides should be handled with care as they constitute chemical hazards.

At time of harvest, the grapes must have also reached correct maturity.

Pesticide and fungicide residues on surface of berries constitute chemical hazards.

REFERENCES

Boboc D., 2006. Managementul calitatii produselor agroalimentare, Editura Academia de Studii Economice, București.

Chira A., 2000. Assuring the quality of horticultural products by HACCP system, Scientific. papers. Series B. Horticulture, p. 181-185.

Juran J.M., 1999. Juran's Ouality Handbook. Ed. Mc Graw-Hill.

Mencinicopschi G., Raba D.N., 2005. Siguranța alimentară-autenticitate și trasabilitate, Ed. Mirton, Timișoara.

Pardo J.E. et al., 2005. Industria vinului-Sistemul de analiză a pericolelor și a Punctelor Critice de Control. Ed. Cartea universitară București.