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Abstract 
 
Under the current climate changes, enhancing temperature is now considered to be one of the major abiotic stresses 
inducing negative effects on plant growth as results of increased production of toxic reactive oxygen species. The 
tolerance of stress is correlated with higher activities of antioxidant defense enzymes which are activated to prevent 
oxidative damage. On the other hand, the use of biofertilizers appears to be involved in increase of tolerance to various 
abiotic stresses, besides their important role in regulating plant growth, development and fruiting. Influence of 
environmental conditions and of some growth regulators treatments (Spraygard 1%, Razormin 0.1%, BAC Foliar spray 
0.3% and BIO Roots 0.2%) on the chlorophylls and carotenoids content and on the activity of peroxidase and catalase 
have been investigated in leaves of tomato seedlings. Analysis of the obtained data emphasize the potential of growth 
regulators in enhancing the resistance to abiotic stresses by protecting the photosynthetic apparatus and improving the 
activity of antioxidant enzymes system. 
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INTRODUCTION  
 
Tomato (Solanum lycopersicum) is considered 
one of the most important vegetable whose 
production is constantly growing since its fruits 
are widely consumed either fresh or processed. 
Beside the high nutritional value, the ripe 
tomato fruits are a valuable source of vitamin 
C, lycopene, carotenoids and minerals such as 
iron and phosphorous that are daily required for 
a healthy diet (Nour et al., 2013). At present, 
the tomatoes acquired great popularity among 
consumers, being considered a protective food 
since the discovery that lycopene has anti-
oxidative and anti-cancer properties (Gajowik, 
2014; Raiola et al., 2014). 
Although tomato plants can grow under a wide 
range of climatic conditions, they are extremely 
sensitive to growing conditions: high 
temperature (both day and night), humidity, 
rainfall and light intensity are the limiting 
factors of tomato production (Ahmad, 2002). 
Temperature stress induces negative effects on 
plant growth and metabolism, so high 
temperature is now considered to be one of the 
major abiotic stresses causing yield reduction 
in crops (Hasanuzzaman et al., 2012).  

Recently some countries practice tomato 
growing even at high temperature through 
application of plant growth regulators. Several 
authors reported that application of substances 
like auxin, gibberellic acid, synthetic auxin 4-
CPA (4-chloro phenoxy acetic acid) have 
resulted in good tomato production under 
adverse environmental conditions (Sasaki et al., 
2005; Gemici et al., 2006; Khan et al., 2006; 
Poliquit et al., 2007; Gelmesa et al., 2012). 
Also good results in improving freezing 
resistance by growth regulators as Ruter AA, 
Terra Sorb and Razormin were noticed in 
experiment with winter wheat cultures 
(Gaveliene et al., 2016). 
Besides their important role in improvement of 
nutritional quality of food crops and their 
efficiency to regulate plant growth, 
development, fruiting and senescence (El-
Rokiek et al., 2012), it seems to be involved in 
induction of tolerance to various abiotic 
stresses (Salehi et al., 2011; Gaveliene et al., 
2016).  
Plants exposed to extreme temperatures 
activated the self-defense mechanisms 
including several non-enzymatic and enzymatic 
antioxidants (�-tocopherol, carotenoids, 
chlorophylls, glutathione, ascorbic acid, 
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oxidases such as catalase, peroxidase, 
polyphenol peroxidase, superoxide dismutase) 
to prevent oxidative damage (Vranova et al., 
2002; Torres-Barceló et al., 2013). Some 
scientific works reported that higher activities 
of antioxidant defense enzymes are correlated 
with higher stress tolerance (Almeselmani et 
al., 2006; Babu et al., 2008; Almeselmani et al., 
2009). 
This study was aimed to investigate the effect 
of growth regulators containing free amino 
acids, macro- and micro-elements (Razormin, 
Spraygard, BAC Foliar spray, Bio Roots) used 
as foliar treatments on tomato seedlings and the 
comparative results were studied. The effect of 
the bioregulators on antioxidant enzymes and 
photosynthetic pigments in tomato plant is less 
known, so that the influence of environmental 
conditions and of some foliar treatments on 
biochemical parameters (chlorophylls and 
carotenoids content, activity of peroxidase and 
catalase) has been investigated in leaves of 
tomato seedlings. 
 
MATERIALS AND METHODS  
 
The experiment was installed into an 
experimental greenhouse of the Hortinvest 
Research Centre - USAMV Bucharest. The 
main objective was testing the effects of 
applications of simple growth regulators 
Razormin 0.1%, Spraygard 1%, BAC Foliar 
spray 0.3% and BIO Roots 0.2% on heat 
stressed and unstressed tomato seedlings in two 
distinct stages: one week, respectively two 
weeks after transplant operation. 
Razormin is a mixture of growth factors (amino 
acids, polysaccharides, macro and micro-
nutrients), which induces development of the 
root system, stimulate the nutrients absorption, 
increases vegetative mass and quality of 
production.  
Spraygard is a complex product that acts as 
safener, penetrant, dispersant, creates adhesion 
of the treatment solutions on the leaves.  
BAC Foliar is a foliar organic nutrient which 
stimulates chlorophyll production in the leaves. 
Bio Roots is a natural root growth supplement 
which contains vitamins, enzymes, organic and 
humic acids that helps plants establish healthy 
and vibrant roots. 
 

Experimental variants were noted: 
     T0 - unstressed control; 
     T1 - tomato seedlings exposed at heat stress 
in absence of growth regulators treatment; 
     T2 - tomato seedlings exposed at heat stress 
and treated with Spraygard 1%; 
     T3 - tomato seedlings exposed at heat stress 
and treated with Razormin 0.1%; 
     T4 - tomato seedlings exposed at heat stress 
and treated with BAC Foliar spray 0.3%; 
     T5 - tomato seedlings exposed at heat stress 
and treated with BIO Roots 0.2%. 
Specific agrotechnics for transplant nursery 
was applied during the growth period: daily 
ventilation, watering, weeding. The unstressed 
control variant was maintained at the 
temperature of 22-26oC at day and 18-20oC at 
night. For the heat stressed variants, the 
temperature was not controlled and registered 
the following variations:  
� the maximum effective temperature 

average for April in the greenhouse was 
31.8oC and the minimum effective 
temperature average at 24.6oC; 

� the maximum effective temperature 
average for May in the greenhouse was 
37.4oC and the minimum effective 
temperature average at 25.2oC. 

The biochemical determinations in the active 
leaves were performed at the end of the 
experiment (after 27 days), when most of 
seedlings have reached the optimum for a 
succesfull planting. 
In order to estimate the oxidative stress 
occurred on cell level, characteristic parameters 
were analyzed, such as proteins content, 
specific activities of catalase as well as 
peroxidase, assimilatory pigments content 
using appropriate methods of analysis. 

� The proteins content was determined 
by Lowry method, which is based on the 
reactivity of the peptide nitrogen with the 
copper [II] ions under alkaline conditions and 
the subsequent reduction of the Folin-Ciocalteu 
phosphomolybdic-phosphotungstic acid to 
heteropoly-molybdenum blue by the copper-
catalyzed oxidation of aromatic aminoacids 
(Lowry et al., 1951). The results were 
expressed in g/100 g fresh weight. 

� The activity of peroxidase was 
determined by spectrophotometric measuring 
of the speed of colour achievement at 436 nm 
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and 25oC in the decomposition reaction of 
hydrogen peroxide with guaiacol as hydrogen 
donor, which is catalyzed by peroxidase 
(Bergmayer, 1974). 

 
The enzymatic unit: the amount of enzyme 
which catalyzed the transformation of one 
micromole of hydrogen peroxide/minute at 
25oC. 

� The activity of catalase was determined 
with method essentially described by Beers and 
Sizer (1952), in which the disappearance of 
peroxide is followed spectrophotometrically at 
240 nm. 
The enzymatic unit: one unit decomposes one 
micromole of H2O2 per minute at 25°C and pH 
7.0 under the specified conditions. 

� Determinations of the assimilatory 
pigments content in the active leaves: 
chlorophyll and carotenoid pigments were 
extracted in 80% acetone and the absorbance of 
the extract was measured at three wavelengths 
(663 nm, 647 nm and 480 nm) with an 
UV/Visible ThermoSpectronic Helios 
spectrophotometer. The results were calculated 
using the extinction coefficients and equations 
described by Schopfer (1989) and were 
expressed in mg/100 g fresh weight (FW). 
 
RESULTS AND DISCUSSIONS 
 
Temperature is a major factor affecting the rate 
of plant development. Warmer temperatures 
expected with climate change will affect the 
physiological processes in plants, therefore the 
plant productivity. Some adaptation strategies 
are available to manage with temperature 
extremes depending on the plant species, being 
genetically determinate. Beside this, 
application of some bioregulators is expected to 
increase tolerance to high temperature stress. 
So analyze of assimilatory pigments and 
peroxidase and catalase activity as oxidative 
stress markers was performed.  
Determination of assimilatory pigments 
content 
Chlorophylls a and b represent the major 
photosynthetic pigments in plants, playing an 
important role in the photochemical reactions 
involved in photosynthesis (Taiz and Zeiger, 
2009), while carotenoids are considered as 

accessory components in the photosynthetic 
complex by providing photoprotection and 
stability of proteins present in the photosystem 
(Torres-Netto et al., 2005; Simkin et al. 2008). 
Photosynthesis, one of the most heat sensitive 
processes, can be completely inhibited by high 
temperature possibly as a result of structural 
and functional disruptions of chloroplasts and 
reduction of chlorophyll accumulation under 
high temperature stress (Camejo et al., 2001; 
Dekov et al., 2000). 
The determinations performed on the tomato 
seedlings showed that high temperature 
affected both chlorophylls a and b, therefore 
the total chlorophyll content. A decrease of 
about 40% was registered in the untreated 
plants exposed to heat stress (T1) compared to 
the unexposed control plants (T0) (Figure 1). 
 

 
Figure 1. Assimilatory pigments content in the 

experimental variants 
 
The effect of high temperature exposure on 
chlorophyll content has been extensively 
studied and similar results were reported at 
some tomato cultivars (Berova et al., 2009) and 
also in other plants as Triticum aestivum 
(Tewari et al., 1998; Almeselmani et al., 2012), 
Festuca arudinacea (Cui et al., 2006), Solanum 
ssp. (Aien et al., 2011). Other authors have 
found an increase in chlorophyll a content in 
lemon stressed plants with high temperatures 
(Martin et al., 1995). 
A higher reducing in chlorophyll b content 
compared to chlorophyll a content (Table 1) 
was registered, so the chlorophyll a/b ratio 
registered an increase in the stressed plants 
compared with control plants, in according to 
the data reported by other authors (Cui et al., 
2006; Zhu et al., 2011). 
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Table 1. Values and ratio of assimilatory pigments in the experimental variants 

Variants Chlorophyll (a+b) 
(mg/100 g FW) 

 

Carotenoids 
(mg/100 g FW) 

Chlorophyll (a+b)/ 
carotenoids  

Chlorophyll 
a/b 

T0  139.66 2.52 55.42 2.34 
T1 81.25 2.66 30.55 3.70 
T2  122.67 3.45 35.56 2.96 
T3  112.68 3.57 31.56 3.08 
T4  124.67 3.77 33.07 2.92 
T5  98.06 3.71 26.43 3.12 

 
Scientific studies reported that a 10-15oC 
increase over normal growth temperature 
results in degradation of chlorophyll and thus 
affecting photosynthesis process. The reasons 
for decreasing in photosynthetic pigments 
under high temperature may be attributed to the 
inhibition of biosynthesis, changes in 
ultrastructure of chloroplast and photo-
deterioration (Tewari et al., 1998; Reda et al., 
2011).  
Observations and measurements performed on 
the experimental variants under growth 
regulators treatment showed a smaller 
diminution of total chlorophyll content in 
stressed plants: about 11% in the plants treated 
with BAC Foliar (T4) and Spraygard (T2) 
compared to the unexposed control plants (T0). 
Generally, it seems that the growth regulators 
treatment induced a better accumulation of 
chlorophylls in the tomato leaves.  
Carotenoids are an important class of 
antioxidants which play a major role in the 
protection of plants against photo-oxidative 
processes (Stahl et al., 2003; Gramza-
Michalowska et al., 2010). Therefore, 
maintaining a higher or invariable level of total 
carotenoids during stressful conditions may 
induces some stress tolerance of the plants 
(Loggini, 1999; Logan et al., 1996; Ruban, 
1999). Carotenoids destruction through 
oxidation may reduce efficiency of the 
antioxidant defense system (Chedea et al., 
2013).  
A slight increase of the carotenoids content was 
registered as result of heat exposure of the 
tomato seedlings (Table 1): 2.66 mg/100 g FW 
carotenoids determined in stressed control in 
absence of treatment (T1) compared to 2.52 
mg/100 g FW carotenoids in unstressed control. 
Also a decrease of chlorophyll 
(a+b)/carotenoids ratio was registered in the 
stressed plants (Table 1). Previous studies 

reported lower chlorophyll (a+b)/carotenoid 
ratio in two heat stressed cultivars of Festuca 
arudinacea in relation to the control plants (Cui 
et al., 2006) and carotenoids amounts increased 
in Populus cathayana cuttings exposed under 
moderate stress conditions (Xiao et al., 2008).  
However, the increase of carotenoids amounts 
was more pronounced in the stressed tomato 
plants under growth regulators treatment 
(between 3.45 mg/100 g FW in Spraygard 
treated variant and 3.77 mg/100 g FW in BAC 
Foliar treated variant) compared with untreated 
control (2.66 mg/100 g FW at T1). Similar 
observations of bioregulators treatment 
increasing carotenoids content were reported in 
some species of pepper plants (Capsicum 
annuum var. grossum, Capsicum annuum var. 
accuminatum), in eggplant seedlings (Balan et 
al., 2018), while higher bioregulator 
concentrations impacted negatively on 
carotenoid content in Capsicum chinense plants 
(Olaiya et al., 2013), also in Triticum aestivum 
plants (Sahu et al., 2011). Total carotenoid 
content did not change with stress conditions in 
tomato cv. Amalia, while increased in 
Nagcarlang cv. (Camejo, 2001). This results 
suggests that the response to treatments with 
the bioregulators is probably genetically 
determined. 
It is well documented that carotenoids act as 
antioxidant compounds involved in protection 
of photosynthetic systems, therefore a higher 
level of total carotenoids support the plant to 
tolerate the stressful condition. These results 
are in agreement with previous studies related 
to plant acclimation to stress (Loggini et al., 
1999; Ruban et al., 1999). 
Determination of content in proteins 
Proteins content analyzed in the leaves of 
tomato seedlings showed that heat exposure 
induced an increase, so that higher values of 
this parameter were registered in the stressed 
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plants (1.37 g %) in absence of bioregulators 
treatment compared with the unstressed control 
(1.25 g %) (Figure 2). However, the increase of 
protein content was more pronounced in the 
leaves of the tomato treated with growth 
regulators (between 1.57-2.15 g %) in 
comparison to untreated stressed control (1.37 
g %), BAC Foliar treated variant (T4) reaching 
the highest value of proteins amount (2.15 g 
%). Previous studies noticed that an increase in 
protein content might suggest a change in the 
gene expression that would be associated with a 
possible thermotolerance and acclimatization to 
stress condition (Camejo et al., 2001). 
 

 
Figure 2. Enzymatic activity and proteins content in the 

experimental variants  
 
Determination of enzymatic activity in the 
seedlings leaves 
There are numerous previous studies which 
indicate that the tolerance to temperature stress 
in plants may be positively correlated with an 
increase in antioxidants content (Babu et al., 
2008; Almeselmani et al., 2009; Hasanuzzaman 
et al., 2013). 
A slight increased activity of peroxidase was 
registered in the untreated tomato seedlings 
under heat stress (0.13 U/mg protein) compared 
with control (0.11 U/mg protein), but response 
to heat stress was amplified in the tomato 
seedlings under growth regulators treatment by 
enhancing the peroxidase activity (between 
0.17 U/mg protein in Razormin variant and 
0.31 U/mg in BAC Foliar variant). 
Catalase activity follows the same dynamics as 
peroxidase: 0.09 U/mg protein in control 
tomato seedlings, which increased at 0.12 
U/mg protein in absence of bioregulators. Also 
the catalasic activity increased in the stressed 
plants treated with growth regulators. Higher 
catalase activities were registered in the tomato 

under treatment with roots stimulator BIO 
Roots (0.33 U/mg protein) and with BAC 
Foliar (0.43 U/mg protein).  
Other authors also reported that some 
treatments of plants with plant growth 
regulators showed positive effects on oxidases 
activities. For example, methyl jasmonate-
treated raspberries, strawberries and blueberries 
showed higher activities of peroxidase and 
superoxide dismutase (Chanjirakul et al., 
2006). 
Previous studies documented that the activation 
of protein synthesis in plants in combination 
with increase of oxidases activity under stress 
conditions may be the result of metabolism 
conversion in order to obtaining a good 
tolerance of plant to stressful conditions. (Tucic 
et al., 2007; Chkhubianishvili et al., 2011; Wu 
et al., 2014). 
 
CONCLUSIONS 
 
The researches performed on the tomato 
seedlings showed that high temperature 
affected both chlorophylls a and b, therefore 
the total chlorophyll content. At the same time 
it seems that the growth regulators induced a 
better accumulation of chlorophylls in the 
tomato leaves since a smaller diminution of 
total chlorophyll content in stressed tomato 
plant was noticed under growth regulators 
treatment. 
A slight increase of the carotenoids content in 
the control plant occured as result of heat 
exposure but higher values of this parameter 
were determined in the stressed tomato plants 
under influence of growth regulators treatment.  
Also the protein content and the oxidases 
activity were enhanced under high temperature 
conditions, mostly in the tomato seedlings 
treated with growth regulators. 
An overview of the researches performed on 
the tomato seedlings allows us to conclude that 
growth regulators treatments determined an 
increased plant capacity to face the effects of 
heat stress by protecting the photosynthetic 
apparatus and enhancing antioxidant enzyme 
systems. Good results in this sense were 
obtained mainly with BAC Foliar spray and 
Razormin, which proved the best ameliorative 
effect under heat stress conditions. 
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However, further studies should be considered 
in order to asses possible combined treatments 
with several growth regulators to achieve 
optimum effects in improving the plants growth 
and productivity under environmental stress in 
the conditions of global climate change.  
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