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Abstract 
 
With the help of constant visual control and spectral during the period 2021-2022, the development of a vineyard was 
followed, and the dynamics of climatic factors were followed. Monitoring of climatic parameters (air temperature, soil 
temperature, atmospheric humidity, leaf humidity, sunshine, wind direction, evapotranspiration, rainfall) was carried 
out throughout the growing season of the vineyard. As a result of the observations and reports, some conclusions were 
drawn related to the effectiveness of drone monitoring. The BNDVI indices, which range from 0 to 1, were measured, 
and soil and leaf moisture parameters were recorded throughout the growing season. During the drone survey, the 
dynamics of the vegetation index of the vine was tracked in the established field experiment. The results of the two-year 
research on yield and quality of grapes fully correspond and are linked to the influence of climatic factors during the 
growing season and the dynamics and course of phenophases. A difference was reported between the two years, both in 
terms of climate and grape and wine quality. Considering the non-uniform site and sloping terrain of the vineyard, it 
was concluded that remote monitoring data is an excellent tool for control, tracking and forecasting, but when 
considering a specific local site, professional visual inspection and the application of additional analyzes and 
performance of measures related to cultivation technology. 
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INTRODUCTION 
 
Drones are still considered a new tool in 
agriculture, but their proven utility for 
assessing plant health in the field and their 
potential for return on investment make them 
an attractive addition to the precision toolkit. 
Interest in the use of drones has grown 
significantly in recent years, Macrina et al. 
(2020). Their application in areas such as 
photography, construction, monitoring are only 
part of the possibilities of use. Unmanned aerial 
vehicles (UAVs) can perform planned missions 
without human intervention, reports Azar et al. 
(2021). Automated drone survey aims to 
optimize the detection capabilities and the 
extraction of object shapes and thus increase 
the autonomy of surveyed fields (Orengo et al., 
2021). This high-tech technology allows 
farmers to collect, store, combine and analyze 
the data layers performing precise management 
of fertilization and irrigation An algorithm was 
developed to detect the position and number of 
plants in vineyards using RGB drone images 
with a plant detection accuracy of 87%, reports 
Bruscolini et al. (2021) This monitoring tool 
enables winegrowers to keep their vines under 
control and improve plant health with targeted 

actions such as irrigation scheduling or specific 
treatment with plant protection agents and 
foliar fertilizers. 
Chung et al. (2020) systematize the state-of-
the-art approaches for drone application 
optimization, including construction, 
agriculture, transportation, security, disaster 
management, etc. They also present developed 
mathematical models, methods for solving 
problems. Drones are highly resource-
constrained devices and therefore it is not 
possible to deploy heavy security algorithms on 
board, explains Hassija et al. (2021). A surface 
moisture mapping index (SMMI) model based 
on a modified normalized difference water 
index and a topographic wetness index is 
proposed by a team of scientists, reported Tang 
et al. (2020). The model combines the emission 
properties of reflectance from moisture-bearing 
surfaces of an agricultural field and the slope 
gradient and micro-topographic positions in the 
field. 
In precision viticulture, the characterization of 
spatial variability in the field is a crucial step 
for efficient use of natural resources by 
reducing environmental impact commented 
Pagliai et al. (2022). Technologies such as 
unmanned aerial vehicles (UAVs), mobile laser 
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scanners (MLS), multispectral sensors, mobile 
applications (MA) and structure-of-motion 
(SfM) techniques enable the characterization of 
this variability with little effort. The authors 
report UAV flight testing, MLS scanning over 
the vineyard and MA acquisition over 48 
georeferenced vines. The obtained results give 
them reason to state that the analysed 
instruments are able to correctly distinguish 
zones with different characteristics. 
Since 2010, farmers have been using remote 
sensing data from unmanned aerial vehicles 
that have high spatiotemporal resolution to 
determine the condition of their crops and how 
their fields are changing, Di Gennaro et al. 
(2023). According to the authors, imaging 
sensors such as multispectral and RGB cameras 
are the most widely used tool in vineyards to 
characterize vegetative crown development and 
detect the presence of missing vines along 
rows. A combination of photogrammetric 
techniques and spatial analysis tools underpins 
a methodology for identifying missing vines 
that works with 92.72% accuracy. 
NDVI is widely used to estimate leaf 
chlorophyll content and photosynthetic activity 
of plants using aerial images obtained from 
unmanned aerial vehicles (UAVs) or from 
satellites (Matese et al., 2015; Campos et al., 
2021; 2023). 
UAVs have surveillance advantages that are 
characterized by high flexibility in flight 
planning, low operating costs, and high spatial 
ground resolution of captured images at 
different heights and with different resolutions. 
One of the disadvantages is that they are 
difficult to apply in the presence of clouds. 
NDVI can only refer to the crown of the vine 
(its leaf mass), and when NDVI is reported 
with satellite images it represents an average 
value between the NDVI for the vine and the 
inter-row distances covered by weeds or soil in 
each pixel (Khaliq et al., 2019). 
These visualization inaccuracies are the basis 
for the results being indicative and indicative of 
trends. UAV monitoring is necessary to specify 
the terrain with its strong and weak points, but 
not to predict the condition of the vines, as well 
as the expected yield from them. Remote 
surveys have been done in perennials for NDVI 
and the evaluation of leaf vegetative mass of 
the vine (Rey-Caram`es et al., 2015; Caruso et 

al., 2017) yield and fruit quality (Lamb et al., 
2004; Matese et al., 2021). 
Despite the widespread use of NDVI in 
precision viticulture, there are no studies aimed 
at distinguishing the specific impact of leaf area 
and leaf chlorophyll concentration on the 
resulting NDVI vegetation index. Such 
information can be crucial when there is a 
water or nutrient deficit (Caruso et al., 2023) 
Data from drone coverage of perennial crops is 
an addition that can give guidance on the 
overall condition of the plot, take into account 
problems related to waterlogging or drying of 
the soil surface (overall or locally), unfavorable 
soil conditions in local areas, as well as areas 
with lack of/or nutritional macro or micro 
elements from a given cultivated area. 
The purpose of the study is to study the terrain 
with remote monitoring to study the advantages 
and disadvantages of the vineyard, considering 
the non-uniform plot and sloping terrain. 
 
MATERIALS AND METHODS 
 
During the period 2021-2022, monitoring of 
the permanent plantations was carried out by 
flying over with unmanned aerial vehicles 
(UAVs). Satellite imagery is for the entire 
vegetation and UAV imagery is in the "seed 
pouring" phase. 
In the monitored vineyard, climate indicators 
(air temperature, soil temperature, atmospheric 
humidity, leaf humidity, sunshine, wind 
direction, evapotranspiration, rainfall) were 
monitored throughout the growing season, as 
well as two-year irrigations with drone to track 
the dynamics of the vine vegetation index. As a 
result of the observations and reports, some 
conclusions were drawn related to the 
effectiveness of drone monitoring. The BNDVI 
indices, which range from 0 to 1, were 
measured, as were the limits of soil and leaf 
moisture throughout the growing season. 
In the vineyard there are marked vines of the 
Syrah variety, to which normalization of the 
bunches and defoliation in the area around the 
bunches have been applied. The observed vines 
of each variant have a load of 28 winter eyes. 
There are 30 pieces of each variant formed. 
vines: lime 1. Control - without green prunings; 
var. 2. Bunch rationing - 15 bunches left per 
vine in the "pea" phase; var. 3. Norming and 
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defoliation - 15 bunches per vine are left in the 
"pea" phase and defoliation in the area of 
bunches in the "shattering" phase. 
The yield by variants was reported and the 
mass values of one bunch were averaged by 
variants. The results of the experiment were 
processed by means of one-factor analysis of 
variance. Comparative evaluation was 
performed using the Duncan Test to assess 
differences at the 0.05 level of statistical 
significance. 
Of the technological indicators for grapes, the 
following were measured: 
- grape sugars, % - Dujardin hydrometer; 
- titratable acids (TC), g/l - titration with 0.1n 
NaOH under bromothymol blue indicator. 
 

RESULTS AND DISCUSSIONS 
 
The study was conducted in the region of Stara 
Zagora, Bulgaria with geographical coordinates 
are 42°33′ North latitude and 25°53′ East GMT 
(GPS).  
The region refers to the European-continental 
climatic region, Transitional-continental 
subregion, which includes the region of Eastern 
Central Bulgaria covering the Thracian 
lowland.  
The region is characterized by a continental 
warm temperate climate with an average annual 
rainfall of 565.1 mm and an average annual 
temperature of 15.1°C. 
 
 

 
Figure 1. The top image area "a" shows the area surveyed by the UAV,  

and area "b" shows the monitored area where the vineyard is located 
 
The years of the survey are characterized as 
very warm. Vegetation in 2021 starts in the 
middle of March in 2021, and in 2022 at the 
end of March (Figure 1). The months of July 
and August coincide with the "pea" phase and 
the beginning of the ripening of the grapes, 
which reach their final size and begin to ripen. 
The need for rainfall and optimum temperature 
during this period are crucial for the quality and 
quantity of the yield obtained. During this 
period, the average daily temperature averaged 
over ten days reaches almost 300C. The 
temperature of the soil also increases, which 
makes it difficult for the root system to 
function when there is a lack of soil moisture. 
The amounts of precipitation during this period 

of the growing season are minimal. These 
temperature conditions combined with the 
minimum amounts of precipitation in July, 
August and September and the low atmospheric 
humidity make it difficult for the physiological 
processes in plants to proceed normally, as a 
result of which partial leaf fall is observed. The 
loss of part of the leaf mass delayed the 
technological maturity of the grapes. 
In 2022, the vegetation started during the last 
ten days of March (Figure 1) and the values of 
the average day-night temperature in the 
following months were 3-4°C lower than the 
previous year, which also affected the soil 
temperature. The air temperature and the 
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amount of precipitation is more favorable in 
2022 (Figures 2-4). 
 

 
Figure 2. Air temperature (min., max., average) 

 

 
Figure 3. Evapotranspiration, l/m2 

 

 
Figure 4.  Precipitation, l/m2 

 
Through remote monitoring, a rapid and non-
destructive analysis of the state of the vineyard 
was carried out. The series of photographic 
images taken during the two years of the study 
allow models to be made for yield prediction, 
water stress management, phenological 
development, etc. Figure 4 shows the 
distribution of moisture in the surface soil 
horizon at a specific moment. The monitoring 
allows to trace the available moisture in the soil 

at any moment of the vegetation. In this 
particular case, the observation shows the 
moisture in July 2022, the period of active 
vegetation when the vines need available 
moisture for their growth and development. 
From the image it can be seen that a large part 
of the vineyard is experiencing a water deficit. 
With a lack of moisture, the assimilation of 
water and the minerals dissolved in it is 
difficult. 
The uneven distribution of moisture in the 
monitored massif also leads to differences in 
the development and productivity of individual 
plants relative to the area of the field. As a 
result of the uneven moistening of the soil 
horizon and the unfavorable vegetation in 
2021/2022, uneven ripening of the bunches was 
observed and differences and fluctuations in the 
mass of the bunches after reaching 
technological maturity were found. 
 

 
a) 

 
b) 

Figure 5. Distribution of moisture in the surface soil 
layer in July 2022 

 
Plants have been found to capture visible light 
for the process of photosynthesis. On the other 
hand, near-infrared (NIR) photons do not have 
enough energy for photosynthesis, but they 
carry a lot of heat that is reflected by plants and 
can be captured by cameras. This reflection 
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mechanism breaks down when the leaf dies. 
Near infrared sensors take advantage of this 
property by monitoring the difference between 
NIR reflectance and visible light reflectance. 
This calculation is known as the normalized 
difference vegetation index (NDVI).  
 

 
a) 

 
b) 

 
c) 

Figure 6. Development of the vegetation  
index NDVI in 2021 

 
High NDVI means high plant density and low 
NDVI indicates problem areas in the field. 
Through NDVI, areas of the field where crops 
are growing better can be clearly distinguished 
from those where they are not, allowing zones 
to be created where the correct amount of fer-
tilizer can be applied to each location in the field. 
The NDVI index is related to many plant 
properties. By tracking changes in the arrays, 
various changes that affect crop productivity 
can be identified. Areas with permanent water 
deficit or waterlogging can be located, the 
health status of plants can be monitored. 
By means of the vegetation index NDVI, the 
health status of the plants, the phenological 
development and the biomass of the plants are 
determined. It is standardized and has values 

between -1 (absence of any vegetation) and +1 
(abundant vegetation). Differences in 
illumination and the influence of land 
suitability can be compensated for: 

NDVI = (NIR - Red) / (NIR + Red) 
In Figure 6 traces the development of the 
NDVI index in 2021. The series of photographs 
show an increase in the index from 0.38 
measured in June to 0.40 measured in early 
July. The rise in values coincides with the 
period of intense vine growth. While in August, 
a decrease in the index was already recorded, 
which is due to the decrease in the 
photosynthetic activity of the green parts of the 
vine and an increase in transpiration, which is 
further stimulated by the lack of moisture for 
the roots of the vine. 
Meivel et al. (2021) are of the opinion that real-
time monitoring associated with NIR imaging 
enables the tracking of plants and soil 
conditions, as well as the vegetation index 
responsible for vegetation growth, etc. 
In the second year, remote aerial monitoring 
was carried out using an unmanned aerial 
system (drone) equipped with a specialized 
camera allowing the generation of the 
vegetation index NDVI (measuring the 
possibilities of absorption and reflection of 
incoming light by vegetation, its photosynthetic 
capacity and biomass concentration). The 
camera's multispectral and solar sensors 
capture the amount of light that is absorbed and 
reflected by the vines. The UAVs used have a 
high spatio-temporal resolution. To carry out 
accurate surveys and evaluations of vineyards, 
according to Ferro et al. (2023) it is important 
to choose the appropriate sensor or platform 
because the algorithms used in post-processing 
depend on the type of data collected. 
In the second year, during the observations, 
weeding in the inter-rows was not recorded, 
while in the first year, when measuring and 
photographing the vine array, the entire array 
was observed as a whole. 
Each photo taken by the hyperspectral camera 
is accompanied by a legend and index values 
are indicated (Figure 7). The NDVI Vegetation 
Index - can also reveal the presence of weeds, 
pests, water shortages and other problems, 
giving the grower the information needed to 
identify and quantify the problems, and then 
how best to deal with them.  
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Figure 7. Development of the vegetation index NDVI in 2022. 

 

 
Figure 8. Determination of the Modified Chlorophyll 

Absorption in Reflectance Index (MCARI) 
 

 
Figure 9. Determination of the Normalized Difference 

Water Index (NDWI) 
 
The performance of high-resolution imagery 
was evaluated by considering the well-known 
relationship between the Normalized 
Difference Vegetation Index (NDVI) and crop 
vigor, reported Khaliq et al. (2019). The 
advantage of drone monitoring is that other 
indices can be determined, such as the Green 
Normalized Difference Vegetation Index 
(GNDVI) for evaluating photosynthetic 
activity. This index is more sensitive to crop 

chlorophyll than NDVI. The more intense the 
green, the more developed the vegetative mass. 
MCARI is an index that responds to leaf 
chlorophyll concentration and ground reflec-
tance. High index values mean low chlorophyll 
concentrations. Low chlorophyll indicates 
nutrient deficient plants, pest infestation. 
The Normalized Difference Water Index 
(NDWI) is another index that measures plant 
moisture content in near real time. Information 
on the presence of water stress is an important 
point in the management of water resources. 
The high-tech instrumentation used in precision 
agriculture enables rapid and non-destructive 
analysis of a large set of data. In the present 
study, several surveys were conducted, as a 
result of which the indices were established. In 
practice, it is necessary to carry out monitoring 
during the entire period of crop development. 
Through the capabilities of autonomous 
vineyard monitoring techniques, the series of 
photographic images and videos captured by 
the drone camera can be used for forecasting, 
crop yield modeling, disease prediction, stress 
management. On the basis of the obtained 
results, preventive measures can be taken and 
optimal practices can be applied to obtain high 
yields. According to Di Gennaro et al. (2023) 
the development of a methodology represents 
an effective decision support for the proper 
management of missing vines, which is 
essential to preserve the productive capacity of 
the vines and, more importantly, to ensure 
economic returns to the farmer. 
In precision agriculture, the characterization of 
spatial variability in the field is a step towards 
optimal use of resources and minimization of 
negative environmental impacts. 
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Table 1. Comparative evaluation of indicators for yield, sugars and titratable acids according  
to the pruning option for Syrah variety 

Year Variants Yield of 1 vine, 
g  

Mass of 1 
bunch, g 

Mass of 100 
grains, g  

Sugars 
% 

Titratable acids, 
g/l 

 
 
 

2021 

Control - without green 
prunings 

3074±22a 106±5b 112±3b 189±1c 6.45±0.12a 

Normalized 2055±22c 137±3a 117±3ab 203±1b 5,94±0,07b 
Normalized and defoliated 2145±18b 143±4a 124±4a 209±1a 5.65±0.10b 
Average value 2425±163 129±6 118±2 200±3 6.02±0.13 
P-Value 0.000 0.002 0.094 0.000 0.004 

 
 
 

2022 

Control - without green 
prunings 

2185±9a 104±5 131±5 228±1a 7.00±0.04a 

Normalized 1650±25c 110±4 128±4 226±1a 6.72±0.04b 
Normalized and defoliated 1785±13b 119±5 127±3 219±1b 6.88±0.03a 
Average value 1873±81 111±3 129±2 225±1 6.87±0.04 
P-Value 0.000 0.140 0.766 0.002 0.006 

a, b, c - evidence of differences at a statistical significance level of 0.05. 
 
To study the influence of the pruning variant on 
the productivity of the grapes, as well as the 
content of sugars and titratable acids, a one-
factor analysis of variance was applied for each 
of the years of study. Comparative evaluation 
was conducted using the Duncan Test to assess 
differences at the 0.05 level of statistical 
significance. Both the average values of each 
indicator for the corresponding type of pruning, 
as well as the standard error, giving 
information about the degree of variation of the 
characteristic, were calculated. 
Given the results in Table 1, it should be 
considered that in 2021 the type of applied 
pruning has a statistically significant effect on 
all the studied indicators, and in 2022 - only on 
yield from one vine, content of sugars and 
titratable acids. 
In 2021, the highest yields were found in the 
vines without green pruning (3074 g), and the 
lowest - in normal pruning. The normalized and 
defoliated version of pruning has a positive 
effect on the mass of grapes (143 g) and per 
hundred grains (124 g), as well as on the 
content of sugars (209 g/dm3). The richest in 
titratable acids are the vines without green 
prunings (6.45 g/dm3). 
In 2022, it turns out again that the most 
productive are the vines without green 
prunings, whose yields reach 2185 g. 
Significantly less productive are normalized 
and defoliated (1785 g), and the lowest 
productive - normalized (1650 g). Grapes from 

vines without green prunings                    (228 
g/dm3) and normalized (226 g/dm3) are the 
richest in sugars. The highest content of 
titratable acids was found in grapes without 
green prunings (7.00 g/dm3), followed by 
normalized and defoliated (6.88 g/dm3) and 
normalized (6.72 g/dm3). 
Linear regression is a statistical method for 
constructing a linear relationship between a set 
of independent variables and dependent 
variables. Through regression analysis, the 
nature of the relationship between the studied 
indicators is presented. The coefficient of 
determination (R2 = 0.8927) was calculated 
when analyzing the relationship between yield 
and mass of 100 grains. A strong positive 
correlation dependence was established. 
 

 
 
Figure 10. Linear regression model between sugars and 

100 grains mass 

y = 1,917x - 23,387
R² = 0,8927
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Figure 11. Linear regression model between yield and 

weight per 100 grains 
 
From the linear model in Figure 11, it can be 
seen that there is a weak correlation between 
yield and mass per 100 grains. The calculated 
coefficient of determination (R2 = 0.0312). A 
strong positive correlation was found between 
the mass of one bunch and sugars, with a 
coefficient of determination R2 = 0.895. 
 

 
Figure 12. Linear regression model between mass of 1 

bunch and sugars 
 
The results showed that the remote monitoring 
of perennial crops provides indicative data, 
taking into account the trend of some indicators 
tracked during the vegetation period. When 
registering a low vegetation index during the 
growing season, for example, it is necessary to 
look for the reasons, to take soil samples, to 
make an irrigation or any other measure that is 
necessary to ensure the health status of the 
vines. 
 
CONCLUSIONS 
 
As a result of the conducted remote monitoring, 
it can be concluded that the development and 
growth of the vegetative mass of the vine 
corresponds to the recorded vegetation index of 

the vine for the phenophase in which the 
monitoring was conducted. 
The influence of climatic factors greatly affects 
the development, growth, yield and physiology 
of the vine. Vegetation indices are a complex 
assessment of the whole terrain, not just the 
plant itself, and with UAVs a difference in the 
captured geometric image is taken into account, 
which affects the NDVI values. 
Linear regression models show a strong 
positive correlation between the mass of one 
bunch and sugars, with a coefficient of 
determination R2 = 0.895, as well as between 
the yield and the mass of 100 grains (R2 = 
0.8927). 
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