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Abstract  
 
Global warming and the climate associated changes generally influence on plant phenology throughout their entire 
ontogenetic cycle (including autumn phenology), also having an impact on different ecological processes and on 
ecosystems. Stomata are specialized cellular structures located in the plant epidermis, which have a great importance 
for plant physiology, evolution, and global ecology. They are known especially for their role in carrying out the gases 
exchange, but their contribution to the maintenance of optimal leaf temperature, water, and nutrients uptake, as well as 
to assuring the continuity of their transport throughout the plant cannot be neglected This paper describes: 1) 
characteristics of stomata in mature leaves of some deciduous ornamental trees grown in the Botanical Garden of the 
University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania; 2) water use efficiency, quantum 
yield, and transpiration: stomatal conductance ratio, during autumn senescence. Both indicators’ categories can be 
promising to predict the autumn phenological shifts of the studied species driven under urban area conditions. 
 
Key words: Botanical Garden, deciduous ornamental trees, leaf stomata, water use efficiency, leaf senescence.  
 
INTRODUCTION 
 
Plant ontogeny progresses by succession of 
specific phenological phases in relation to the 
species, represented as changes of traits 
expression due to intrinsic and extrinsic 
determinants, together with their interactions 
(Barton, 2023). Obviously, especially in recent 
years, in areas known to have a temperate 
climate, because of global warming such 
changes are accentuated. To address this 
challenge, both in the spring and autumn 
seasons, plants have adjusted their behavior, 
which has a significantly impact on different 
ecological processes (Xie et al., 2018; Tao et 
al., 2019).  
It's worth mentioned that understanding the 
autumn phenology of deciduous trees species, 
but also of the climatic and meteorological 
factors involved can lead to the prediction of 
the autumn phenological shifts induced by 
projected climate change (Xie et al., 2018). The 
studies of Mariën et al. (2018) on beech, birch, 
and oak in forest trees in Belgium, highlighted 

that environmental conditions did not affect the 
onset of leaf senescence in mature trees, 
suggesting the existence of a conservative 
strategy. In a broad sense, autumn leaf 
senescence is a controlled type of programmed 
cell death that, unlike other stressors inducing 
cell death, avoids the loss of leaf nutrients 
(Keskitalo et al., 2005). Perennials specifically 
recapture leaf nutrients during autumn to 
relocate them to their over-wintering organs, as 
this is essential for their growth potential and 
foliage redevelopment during the subsequent 
year (Hagen-Thorn et al., 2006). 
As previously documented, stomata are 
specialized cellular structures located in the 
plant epidermis (mainly in the stem and leaves) 
(Esau, 1977), having their central importance 
for plant physiology, evolution, and global 
ecology (Hetherington and Woodward, 2003; 
Delian, 2020; Ramakrishnan and Ray-
Mukherjee, 2022). It has been extensively 
studied and well documented their role in 
carrying out the gas exchange during 
photosynthesis (Yin et al., 2020), and 
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respectively, that specific to respiration, being 
named the plant's "breathing" pores (Biscoe, 
1872). In addition, due to the transpiration 
process carried out mainly at the level of the 
stomatal pore, but also at the level of the cuticle 
(Kane et al., 2020; Hazlett, 2022), these 
formations contribute to maintenance of 
optimal leaf temperature, water, and nutrient 
uptake, as well as the continuity of their 
transport throughout the plant (Chen et al., 
2022). Really, due to the ability to internally 
regulation of the stomatal pore diameter and 
under the action of external factors, plants 
generally manage the water use efficiency 
(WUE), especially in drought conditions (Yoo 
et al., 2009; Ronzhina et al., 2023). Moreover, 
in-depth genetic studies are intended to 
increase the tolerance of plants to drought by 
modulating the stomatal density (SD) and their 
characteristics to improve WUE (Li et al., 
2021; Jiao et al., 2022), also to increase the 
plant tolerance to drought, in parallel with 
climate changes (Bertolino et al., 2019). WUE 
is also influenced by the presence of trichomes, 
cuticle and cuticular waxes. A high 
trichome/stomata ratio improved WUE thanks 
to the increase in the resistance to the water 
vapor diffusion at the leaf level (Galdon-
Armero et al., 2018, cited by Bertolino et al., 
2019). Furthermore, stomata are entry gates for 
pathogens, such as bacteria. At this level, the 
fight for the plant's immune response is 
triggered (Wang et al., 2022) and, not least, the 
stomata are involved in the plant-insect 
interactions (Lin et al., 2022). 
The stomata distribution at the leaf level, their 
density on a leaf unit area, as well as stomatal 
traits (e.g., types, size etc.) depend on the 
ecological conditions of plant growth (Paridari 
et al., 2013; Kryvoruchko and Bessonova, 
2018; Yigit et al., 2019; Hurt and Doğan, 2020; 
Kou et al., 2023) and are permanently subject 
to a process of adaptation to the constantly 
environmental factors changing (Yin et al., 
2020; Li et al., 2021; Soheili et al., 2023), in 
order to successfully fulfill its multiple roles 
and especially so that the process of 
photosynthesis can be negatively affected as 
little as possible (Ronzhina et al., 2023). For 
example, in Carpinus betulus grown at 
different altitudes (Hyrcanian forest, Iran) a 
negative correlation of stomatal sizes with 

altitude was determined, while for SD the 
correlation was positive. In addition, relative 
temperature and precipitation strongly 
influence the morphological characteristics of 
the leaf (Paridari et al., 2013).  
The interactions between stomata’s traits and 
the environmental conditions are also markedly 
highlighted in the urban environment, 
especially regarding the changes induced by the 
temperature increase (Zhu et al., 2020; Markin 
et al., 2023), carbon dioxide (CO2) 
concentration increasing (Gardner et al., 2023), 
but also by different pollution sources 
(Petrushkevych and Korshykov, 2020), which 
leave their mark on the plant’s morphology, 
anatomy, and physiology. Apart from the 
previously mentioned, SD, as well as the 
presence of trichomes influence the ability of 
plant species to reduce the effects of pollutants 
in urban environments, influencing the 
accumulation of air contaminants in leaves 
(Simon et al., 2014; Zhang et al., 2018). 
Therefore, Green Infrastructure (GI) is one 
potential passive control system for air 
pollution in street canyons (Tomson et al., 
2021). Marek et al. (2022) highlighted the 
adaptation of Pinus sylvestris plants to the 
temperature increase, rather than to changes in 
CO2 level. Therefore, the intraspecific 
relationship between SD and climate can 
characterize SD response to global warming 
(Marek et al., 2022). 
Considering the previously presented, the aim 
of this study was to describe: 1) stomata 
characteristics in mature leaves of 19 deciduous 
ornamental trees species grown in the Botanical 
Garden of the University of Agronomic 
Sciences and Veterinary Medicine of Bucharest 
(USAMV of Bucharest), Romania, using light 
microscopy; 2) leaves water use efficiency and 
quantum yield during autumn senescence. Both 
indicators’ categories can be promising to 
predict the autumn phenological shifts of the 
studied species driven under urban area 
conditions. 
 
MATERIALS AND METHODS  
 
Study sites and species 
This research was carried out during autumn 
senescence, on leaves of 19 deciduous 
ornamental trees species grown in the Botanical 
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Garden of the Faculty of Horticulture, USAMV 
of Bucharest, Romania, North latitude of 44024' 
N and 26005' East longitude, and an altitude 
which varies between 60 m and 90 m above sea 
level, with a temperate-continental climate. 
The species belong to 19 different families, as 
follows: (A) Sapindaceae (Aceraceae) - 1. Acer 
platanoides L.; 2. Acer pseudoplatanus L.; (B) 
Anacardiaceae - 3. Cotinus coggygria Scop.; 
(C) Betulaceae: 4. Betula pendula Roth (B. 
verrucosa); 5. Corylus avellana L.; 6. Corylus 
colurna L.; 7. Carpinus betulus L.; (D) 
Caesalpiniaceae - 8. Cercis siliquastrum L.; (E) 
Calycanthaceae - 9. Calycanthus floridus L.; 
(E) Cornaceae - 10. Cornus mas L.; 11. Cornus 
sanguinea L.; (F) Ebenaceae - 12. Diospyros 
virginiana L.; (G) Fagaceae - 13. Quercus 
rubra L. (Q. borealis Michx.); (H) 
Ginkgoaceae: 14. Ginkgo biloba L.; (I) 
Magnoliaceae: 15. Liriodendron tulipifera L.; 
(J) Moraceae - 16. Maclura pomifera (Rafin.) 
C.K. Schneid.]; (K) Oleaceae: 17. Forsythia x 
intermedia Zabel; (L) Tiliaceae: 18. Tilia 
tomentosa Moench (T. argentea DC.); (M) 
Ulmaceae: 19. Celtis occidentalis L. 
 
Leaf traits 
The stomata density and their characteristics 
features 
Stomatal distribution, stomata density (SD) in 
leaves and their traits have been analysed on 
mature healthy still green leaves, in October 
2023, by the method of stomatal impression 
described everywhere in specialized works. A 
thin layer of nail polish was applied on both 
sides of the leaves, on an area of about 2 cm2. 
After solvent evaporation (about 20 minutes 
later), the transparent stomatal impression of 
the leaf epidermis was taken with the help of a 
sheet of transparent shells and placed on a 
microscopic slide, which was labelled with the 
name of the sample. 

The observations, images and measurements of 
the anatomical structures were made with the 
optical microscope Leica DM1000 LED, 
Camera video Leica DFC295 the Laboratory of 
Microscopy and Plant Anatomy of the USAMV 
of Bucharest. For stomatal density (SD), ob. 40 
x. was used, and the photos and measurements 
of the stomata were made at ob. 20 x. 

SD was counted and expressed as number per 
mm2. The guard cells length (GcL) (μm), guard 
cells width (GcW) (μm), stomatal pore length 
(SPL) (μm) and stomatal pore width (SPW) 
(μm) were measured. Then, the stoma area 
(STArea) as well as the stoma pore area 
(STPArea) were calculated, too (μm2). Also, 
photos were taken for the stomatal impressions 
of the lower epidermis of each sample. 
 
Physiological associated indicators 
Based on the net photosynthesis rate (A - µmol 
CO2 m-2 s-1) and transpiration rate (E - mmol 
H2O m-2s -1) (data are not shown) measured in-
situ, for still green leaves, using the portable 
infrared gas analyser (LCPro-SD-ADC 
BioScientific Ltd, Hoddesdon, UK), there were 
calculated two associated indicators, namely: 
water use efficiency (WUE) (A/E) (µmol CO2 
m-2 s-1/ mmol H2O m-2s -1) and quantum yield 
(φCO2) (A/ Photosynthetic Photon Flux Density 
(µmol CO2 m-2 s-1/ µmol photons m-2s -1). 
 
Statistical analysis  
Data were processed using Microsoft Excel 
(version 2010) and are shown as average values 
± Standard Error (SE). The analysis of variance 
(ANOVA) was performed. Then, the post hoc 
Duncan Multiple Range Test (DMRT) by using 
IBM SPSS Statistics software was carried out 
to determine where there were statistically 
significant differences between different 
species. Statistically significant differences 
have been considered at the value of p ≤ 0.05.  
Pearson correlation coefficients were also 
calculated to evaluate the posible relationship 
between stomatal traits and physiological 
indicators at 95% confidence level. Graphs 
were constructed using Microsoft Excel 2010. 
 
RESULTS AND DISCUSSIONS  
 
An overview of the leaves micromorphological 
characteristics is shown in Figure 1. The 
variability of the epidermal cells shapes and 
size of the for the 19 species studied, the type 
of stomata, as well as the presence of trichomes 
in some cases can be observed. The stomata are 
present only at the level of the lower epidermis 
(abaxial) and in most of the analyzed species, 
they are of the paracytic and anomocytic type. 
In the case of 9 Acer studied species, most of 
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the stomata were of anomocytic type, but on             
A. platanoides there were observed some that 
resemble the paracytic type (Toma et al., 2015). 
As regards the presence of trichomes, the types 
present and their respective sizes, the species  
C. occidentalis stood out, which at the level of 
the upper epidermis presented multicellular 
hairs, with a diameter of 8.43 µm and a length 
of 106.7 µm. In C. sanguinea, they were 
located on both epidermises, but the length 
varied (155 µm adaxially, respectively 217 µm 
abaxially). For T. tomentosa, stellate hairs were 
observed, and in the case of F. x intermedia the 
secretory hairs consisted of 8 cells, with a mean 
diameter of 22.33 µm. Our results agree with 
those obtained by Gülz et al. (1991) who 
observed in the leaves of T. tomentosa just 
emerging from the bud, dense trichomes 
(consisting of eight stellate cellular hairs) 
located on the abaxial side, while in mature 
leaves, because of the growth of differentiated 
cells, the density of the hairs was reduced. On 
the adaxial surface there were only solitary 
stellate hairs, to which solitary glandular 
trichomes were added. Simon et al. (2014) also 
found that in C. occidentalis leaves, in addition 
to the stomata size and their distribution as 
having a major importance in the accumulation 
of contaminants from the air, the presence of 
numerous trichomes leaves its mark on the dust 
deposition. Also, unicellular glandular hairs 
have been observed by Toma et al. (2015) on 
the A. platanoides petiole epidermis. On A. 
platanoides and A. campestre lamina there 
were observed unicellular (or tricellular on the 
latter species) eglandular hairs. 
Table 1 shows the average values ± SE of the 
determined indicators, as well as the 
significance of the differences at the level of p< 
0.05. Stomata number, as well as their sizes 
varied widely among evaluated species, being 
strong significantly different from a statistical 
point of view. According to ANOVA test, p 
values were < 0.001 for each studied 
parameter. Stomatal density per mm2 leaf area 
ranged between the lower one – 70.33 mm-2  
(A. pseudoplatanus) to the highest registered 
for C. occidentalis (467 mm-2), with a mean 
value of 172 mm-2. 

The length and width of the guard cells also 
showed a wide variability. The length was 
higher than the width, ranging between                
8.70 µm (A. platanoides) and 22.80 µm               
(B. pendula), with an average value of 15.86 
µm. The lowest value for guard cell width was 
2.86 µm, (C. occidentalis), while the maximum 
one was 7.80 µm (G. biloba). It can be 
observed that for A. platanoides the lowest 
values were noticed also for stoma pore length 
(5.26 µm), stoma pore width (1.50 µm), stoma 
area (74.98 µm2) and stoma pore area                  
(7.95 µm2). At the opposite pole was                       
B. pendula, with STArea of 418.91 µm2 and                
C. mas with a SPArea of 63.84 µm2, species in 
which SD had a low value of only 85 stomata 
mm-2. 
The low values of the water use efficiency and 
quantum yield (Table 1) can be explained by 
the fact that the determinations regarding net 
photosynthesis and transpiration rate were 
carried out during autumn, when naturally, 
physiologically, the rate of net photosynthesis 
decreases in relation to the onset of leaf 
senescence, with all the consequences that arise 
on the physiological processes in plants. 
However, if the degree of senescence is 
variable depending on the species, the 
mentioned indicators also show very different 
values. 
The Pearson correlations between stomatal 
traits and associated physiological indicators 
are shown in Figure 2. Green represents a 
negative correlation, while red represents a 
positive correlation. Overall, we notice a wide 
variability in relation to the studied species. SD 
showed rather a negative correlation with 
different indicators (more evident in                        
A. platanoides), except C. siliquatrum and to a 
certain extent Q. rubra. Also, the stomata traits, 
water use efficiency and quantum yield were 
strongly positive correlated (r > 0.7) in                     
A. pseudoplatanus, and to a lesser extent in 
descending order of the species C. betulus,              
C. siliquastrum and F. intermedia. Negative 
correlations were recorded especially in                  
C. coggygria, B. pendula, C. floridus and to 
some extent in C. occidentalis.  
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We recorded that for WUE there is a very 
strongly positive correlation with the quantum 
yield, as logically expected. The exception was 
L. tulipifera, in which case a strong negative 
correlation was noticed (r = - 0.95). 
Although the stomata ostioles occupy a small 
area of the total leaf surface, through them 
significant amounts of water pass in the form of 
vapors (during transpiration), as well as CO2 
(raw material in photosynthesis) (Chen et al., 
2022). Regarding their characteristics, Yin’s et 
al. (2020) studies on 45 species of woody 
plants highlighted the relationship between the 
maximum rate of photosynthesis and stomatal 
characteristics (SD, stomatal length, maximum 
stomatal conductance) and revealed some 
contradictory results compared to those 
obtained through previous studies. The authors’ 
conclusion was that plants that possess a 
smaller number of stomata (but with larger 
sizes) can have a maximum stomatal 
conductance with lower values. As a result, 
under conditions of increased CO2 
concentration and reduced water availability, as 
is predicted to happen in the future, the rate of 
photosynthesis can still be maintained at 
adequate values. 
Yigit et al. (2019) highlighted the dependence 
of the micromorphological characteristics of 
the leaves on the growing conditions. Thus, in 
T. tomentosa, apart from the length and width 
of the stomatal pore, where the differences 
were statistically insignificant (the average 
values varied from 9.76 - to 10.73 µm; 
respectively 3.38 – 4.35 µm), for stoma length 
(14.36 to 18.89 µm), stoma width (9.36 to 
15.07 µm) and stomata density (20 to 176) the 
differences depending on the area were 
significantly different. In our study we found 
that SD was 77.67 mm-2, so close to the one 
recorded in the city of Sivas (Turkey) (72), and 
the stoma length of 14.83 µm (close to the one 
measured in Izmir - 14.36 µm). The changes in 
stomatal characteristics are specific to the 
species, the cultivar and depend on the climate 
specific to the plant growth conditions, 
otherwise confirming the results previously 
obtained by other authors (Hurt and Doğan, 
2020; Sevic et al., 2020). Although a negative 
relationship was usually found between SD and 
the concentration of carbon dioxide in the 
atmosphere, the research carried out by Marek 

et al. (2022) in Pinus sylvestris highlighted the 
link between SD variation and temperature 
changes, respectively a response to climate 
warming. 
Naturally, plants can regulate the degree of 
stomata opening to maximize the CO2 
assimilation, simultaneously with the reduction 
of water losses. But the studies have also 
demonstrated that in the case of extreme heat, a 
decoupling of stomatal conductance - net 
photosynthesis rate takes place, which allows 
leaves survival in such conditions, as well as a 
quickly depletes available water (Marchin et 
al., 2023). Maximum daytime operating 
stomatal conductance have been characterized 
by having lower instantaneous water use 
efficiency (iWUE), while water potential 
gradients were highly varied. As a result, the 
faster stomatal response can be useful for such 
leaves. Thus, smaller stomata with a faster 
dynamic feature can be integrated to plants 
selection for stomata conductance as an adding 
trait for enhancing photosynthesis 
performances, as well as to improve 
agricultural qualities (Drake et al., 2012).  
Moreover, genetic manipulation of stomata, 
with the aim of making their role more efficient 
is a current concern of researchers. In this 
context, the proof is in-depth studies carried out 
by Li et al. (2021) on poplar. It has been 
demonstrated the role of PdERECTA in 
stomatal modeling with the aim of increasing 
the efficiency of water use, respectively 
reducing SD, and increasing their size in the 
case of overexpression of the mentioned gene. 
It was thus emphasized that stomatal 
conductance decreased and implicitly the 
intensity of transpiration done the same, which 
increased WUE (without significantly affecting 
CO2 absorption). It was appreciated that the 
PdERECTA gene is of interest for the genetic 
modification of poplar to obtain drought 
tolerance trees. Jiao et al. (2022) isolated an 
EPIDERMAL PATTERNING FACTOR (EPF) 
secreted Cys-rich small peptide PdEEPFL6 
from NE19 [Populus nigra × (P. deltoides × P. 
nigra)] that was highly induced by dehydration 
treatment in poplar. Overexpression of 
PdEPFL6 determined a significantly decrease 
of the PdSPCH and PdMUTE transcription 
factors expression, which are implicated in 
stomata development. Thus, stomata density 
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was reduced and respectively, drought 
resistance was improved.  
Eensalu et al. (2008) highlighted variations in 
B. pendula stomata traits depending on the leaf 
position in the crown, respectively in relation to 
the intensity of the light incident on the leaf. In 
the upper part of the crown, a higher SD and a 
smaller leaf surface were determined, while no 
significant changes were noted regarding the 
epidermal cell density. Also, the length and 
width of the guard cells at the abaxial leaf level 
had lower values in the case of reduced light 
availability. To detect some bioindicators of the 
state of the urban environment, Petrushkevych 
and Korshykov (2020) studied different 
measurements of B. pendula exposed to 
different levels of aerotechnogenic loading. 
Among them, there was a decrease in the 
length, width, and stomata area, while the 
thickness of the leaf and the SD increased. In 
addition, in B. pubescens, in the case of high 
temperatures and water deficit, the size and 
number of stomata decreased, while the number 
of mesophyll cells and chloroplasts per surface 
unit increased, as measures to counteract the 
effects of the decrease in leaf conductance 
(Ronzhina et al., 2023). 
Regarding the contribution of the stomatal 
transpiration has in total transpiration, Kane et 
al. (2020) underline the existing differences in 
Q. rubra depending on the age of the leaves, 
respectively the presence or absence of stomata 
and the presence of the cuticle (and its 
thickness). The authors obtained different data 
as compared to those previously reported. It 
was considered that intense transpiration in 
young growing leaves is due to keeping the 
stomatal ostiole open. The recent explanation 
was that the ability to close would develop as 
stomata are exposed to low humidity and high 
concentrations of abscisic acid. 
Akinshina et al. (2020) described L. tulipifera 
stomata, regarding the position on the leaf, the 
specific type, as well as the influence of light 
on SD. Thus, in the case of leaves exposed to 
the sun, the number of stomata was by 82% 
higher compared to the number of stomata in 
the shade leaf (182 vs. 100 mm-2; length -                
39 µm vs 32 µm; width 21 µm vs. 13 µm). The 
ecological plasticity of this species relative to 
light and temperature is highlighted, which 
improves its acclimatization to arid climate 

conditions. The ability to quickly close the 
stomata, as the water potential of the leaves 
decreases (respectively the isohydric response) 
denotes an ability of L. tulipifera to avoid the 
stress caused by drought, compared to other 
species such as Pyrus and Quercus 
characterized by an anisohydric response 
(Cregg et al., 2023). In the same vein, the 
research carried out by Kryvoruchko and 
Bessonova (2018), in Q. robur and Q. rubra 
species grown alone, highlighted an increase in 
SD by 30.6% and 25.3%, respectively, 
compared to those grown in groups. At the 
same time, there were changes in the anatomy 
of the leaf, which for solitary plants leads to 
xeromorphism type behavior, as adaptation 
reagents to the greater shortage of air and soil 
moisture. 
Miller-Rushing et al. (2009) investigated 
whether the tree species grown individually in 
the Arnold Arboretum in Boston, 
Massachusetts underwent changes for 100 
years (1893 to 2006), regarding SD, guard cell 
length, and intrinsic water use efficiency 
(iWUE), examining leaves from 74 herbarium 
specimens collected from three genera: Acer 
(maples), Quercus (oaks), and Carpinus 
(hornbeams). In oak and hornbeam, a negative 
correlation was found between SD and the 
length of the guard cells, respectively, the SD 
decreased, while the length of the guard cells 
increased. The WUE values did not undergo 
significant changes over time. The authors 
appreciate that iWUE does not respond to 
changes in CO2 concentration, probably due to 
changes in stomatal characteristics, such as 
their density and the guard cells sizes.   
In the species C. coggygria, in China, Li et al. 
(2022) studied the effects of unusual 
continuous rainy weather and determined a 
significant positive correlation with the values 
of some environmental indicators such as 
sunshine duration, temperature, 
photosynthetically active radiation (PAR) and 
daily precipitation (DPD) greater than or equal 
to 0.1 mm. Also, the transpiration rate was 
significantly correlated with SD and 
temperature, PAR, DPD, and the atmospheric 
CO2 concentration.  
Following the meta-analysis carried out by 
Gardner et al. (2023), it was suggested that the 
intensification of the photosynthesis process, 
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rather than the reduction of stomatal 
conductance, leads to the improvement of 
iWUE, under conditions of increased CO2 
concentration in all analyzed species. In 
addition, leaf–air vapor pressure difference (D). 
factor was also important to compare the 
different species and the obtained results 
emphasized that the most responsive to D were 
angiosperms, as against gymnosperms. The 
studies carried out by Avci and Aygün (2014) 
on 18 Turkish hazelnut (Corylus avellana L.) 
revealed that the leaves are hypostomatic and 
there are statistically significant differences 
regarding the number of stomata and 
respectively the size of the stomata, 
appreciating that these indicators could be used 
to identify the varieties.  
The drought applied to B. pendula seedlings 
significantly affected the anatomy of the leaf 
(Kou et al. 2023), regarding the length of the 
stomata (p<0.05) and had a highly significant 
effect (p<0.01) on the change in stomatal 
structure. At the control, SD was 56.33 mm-2, 
while the higher drought stress level (of 25 % 
polyethylene glycol) induced an increase of SD 
to 73 mm-2. At the same time, stomata length, 
stomata width and stomatal aperture decreased 
from 44.33 µm to 39.36 µm; 36.53 µm to 32.67 
µm, respectively from 5.71 µm to 1.75 µm in 
the case of the last parameter. Authors 
appreciate that these data can serve as a 
theoretical basis for the selection and breeding 
of new drought-tolerant European birch species 
and the promotion of new drought-tolerant 
species in China. According to the previously 
data, our obtained results of SD – 102.67 mm-2 
or guard cells length (22.80 µm – evident 
below 39.36 um as noted before) possible 
signify an adaptation of this specie to the 
drought stress. 

 
CONCLUSIONS  
 
Global warming and the climate associated 
changes generally influence on plant phenology 
throughout their entire ontogenetic cycle 
(including autumn phenology), also having an 
impact on different ecological processes and on 
ecosystems. 
The micromorphological characteristics of the 
mature leaves of the studied ornamental 
deciduous trees are very closely related to the 

species and the specific growing conditions. 
The striking variability regarding the stomata 
density, but also their dimensions, as well as 
the marked differences compared to the 
existing data in the specialized literature, are 
the expression of the fact that the biological 
material was represented by in situ mature, old 
individual trees (not grouped), grown, and 
adapted along the time to the environmental 
conditions of an urban botanical garden, 
located in a temperate climate. 
Overall, the results regarding the 
interrelationships between micromorphological 
and physiological associated characters, such as 
water use efficiency and quantum yield, 
suggest that trees belonging to different 
botanical families have a specific behavior 
during leaf senescence, in the autumn season. 
Some species are less photosynthetically 
efficient than others, which may mean that a 
negative photosynthesis can be associated with 
a higher rate of respiration. In autumn 
conditions, the intensification of the catabolic 
processes at the leaves level before they fall 
should not be considered as a minus for the 
plant, but a benefit for what means an efficient 
compounds re-translocation in perennial plant 
organs before the leaves fall and not ultimately 
a proper preparation of the plant to get through 
the winter and start vegetation the following 
year. 
To our knowledge, these are the first results on 
this topic in Romania. These are added to those 
previous obtained by other researchers, 
contributing to expanding our understanding 
and support the prediction of the autumn 
micromorphological and physiological shifts 
driven under urban area conditions, helping 
also, to understand plants adaptation to the 
future changing environmental climate. 
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