DEVELOPMENT OF PLANT TISSUE CULTURE AND INDOOR FARMING SYSTEMS IN CONTROLLED ENVIRONMENTAL CONDITIONS USING LIGHT-EMITTING DIODES (LEDs) FOR THE PRODUCTION OF HIGH-VALUE CROPS

Sreeramanan SUBRAMANIAM^{1, 2, 3, 4, a}, Ayyagari RAMLAL^{1, 5, b}

 ¹School of Biological Sciences, University Sains Malaysia (USM), Georgetown, Penang, Malaysia-11800
 ²Centre for Chemical Biology (CCB), University Sains Malaysia (USM), Bayan Lepas, Penang, Malaysia-11900
 ³Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia-60115
 ⁴Institute of Nano Optoelectronics Research and Technology, University Sains Malaysia (USM), Bayan Lepas, Penang, Malaysia-11900
 ⁵Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi, Delhi, India-110012

Corresponding author emails: sreeramanan@gmail.com, sreeramanan@usm.my a0000-0003-4392-285X and b0000-0002-1093-9877

Abstract

The plant tissue culture system makes it possible to produce plants in a controlled environment under sterile conditions in large quantities and at a constant and faster rate. Light is one of the most important variables that can affect the growth and development of plant tissue culture, influencing photosynthesis, morphogenesis and physiological processes. Lightemitting diodes (LEDs) are useful in this scenario as they allow the irradiation of a narrow spectrum of light that meets the requirements of plants for their growth and development. Different LED-generated spectra with uniform intensity are used in plant tissue culture to enhance plant growth, development and proliferation. In a vertical farming system, LEDs can be used as energy-efficient light sources to produce high-quality products with high nutritional value. Commercially viable growing systems for high-value vegetables such as premium lettuces, herbs, microgreens, edible flowers and strawberry plants have been developed. The continuous acquisition of new concepts and knowledge in photobiology and plant morphogenesis, complemented by the rapid development of LED technology, will make the application of solid-state lighting more remunerative.

Key words: Indoor Farming, Light-emitting diodes, Plant Tissue Culture, Secondary Metabolites.

INTRODUCTION

Plant tissue culture (PTC) is a fundamental science from the field of plant biotechnology that contributes to the understanding of plant growth and development at the cellular level (Sudheer et al., 2022; Nautiyal et al., 2024; Raj et al., 2025). Plant tissue culture is defined as an *in vitro* method for growing or manipulating plant cells, tissues, organs or whole plantlets under sterile and controlled environmental conditions such as temperature, light and humidity on a culture medium. This method is based on totipotency (each living plant cell has the genetic potential to regenerate into a whole plant) and plasticity (the ability of cells to

change their developmental pathway in response to external stimuli) (Bidabadi and Jain, 2020). PTC was first proposed in 1902 by the German botanist Gottlieb Haberlandt, who is widely regarded as the father of plant tissue culture (Gaikwad et al., 2017). He cultured palisade tissue in Knop's solution with sucrose and observed cell growth. In 1904, Hanning successfully cultured excised crucifer embryos on a mineral sugar medium, a technique that was later further developed by Overbeck in 1941. An important milestone was reached in 1972 when Carlson et al. created the first somatic hybrid by fusing protoplasts of *Nicotiana glauca* Graham (Solanaceae) and N. langsdorffii Weinm. (Evans and Flick, 1983). Tissue culture was first

used by the orchid industry for mass propagation in the 1950s.

PTC overcomes the limitations of conventional propagation, especially for species with limited or unprofitable seed production, by providing a platform for the rapid clonal propagation of elite genotypes and the production of genetically uniform stocks (Smith and Drew, 2000). Any plant organ, such as roots, stems, buds, apical meristems, cotyledon nodes, leaves, anthers or ovaries, can be used for culture. Meristem tip provides pathogen-free material, which is crucial for vegetatively propagated plants such as banana and potato (Krishna et al., 2022). The technique also supports vitro conservation in and cryopreservation protocols, protecting the germplasm of rare or endangered taxa. In addition, totipotent regeneration systems are essential for modern biotechnology, as they serve as a regenerative backbone for genetic transformation. genome editing and production of double haploids, which together breeding cycles accelerate and trait introgression (Altman, 2003).

Some of the applications of PTC are summarised in Table 1. From a sustainability perspective, closed, aseptic culture systems require significantly lower inputs of land, water and agrochemicals than field propagation (El-Sherif, 2018). The agronomic impact is illustrated in Bihar, India, where the use of tissue culture-derived, virus-indexed banana plantlets

increased yields from ~20 t ha⁻¹ in 2004-2005 to ~45 t ha⁻¹ in 2022-2023 (Kumar et al., 2024). However. there are various challenges associated with in vitro cultivations (Ramlal et al., 2024; Bishnoi et al., 2025) and there is a need to include PTC in modern research due to its wide application and need (Negi et al., 2024). Light and physical conditions (temperature, relative humidity) are very important for the proper growth and development of plants, as they regulate the basic processes (Cavallaro et al., 2022). Incandescent lamps (IL), fluorescent tubes (FL), high-pressure sodium lamps (HP-Na) and metal halide lamps (MH) used to be common; however, these are being replaced by more efficient and promising technologies (Cavallaro et al., 2022). Light-emitting diodes (LEDs) are an emerging tool with promising benefits for in vitro cultures, especially for plant secondary improvement and metabolite production (Livadariu et al., 2023; Sena et al., 2024). Maintaining controlled environmental conditions is also crucial for the continuous supply of healthy and good biomass of crops. Therefore, given the prevailing irregularities in climatic changes and the loss of agricultural land, alternative approaches should be utilised. This article provides an overview of the importance of plant tissue culture, importance of light, including light-emitting diodes, and vertical rearing in the mass propagation of tissue-cultured plants.

Table 1. Areas of application of plant tissue culture

Areas of application	Tissue culture	Typical outcome/benefit	References
Micro-propagation	Multiplication via nodal, shoot- tip, or somatic embryo culture	Uniform, true-to-type plants (oil-palm, banana, ornamental foliage)	Butt et al., 2015
Virus elimination	Meristem culture + thermotherapy/chemotherapy	Clean stock of potatoes, sweet potatoes, and cassava	Naik and Buckseth, 2018
Haploid & doubled- haploid production	Anther/ovule or microspore culture	Completely homozygous lines in one generation for cereals, rapeseed	Niazian and Shariatpanahi, 2020; Ramlal et al., 2023
Somaclonal variation/in vitro mutagenesis	Callus culture followed by variant screening	Novel traits such as low-caffeine coffee, dwarf ornamentals, grapevine, sugarcane	Bairu et al., 2011
Genetic transformation & genome editing	Agrobacterium-mediated or biolistic gene delivery followed by regeneration	Transgenic/herbicide-tolerant or CRISPR-edited crops	Altpeter et al., 2016
Protoplast fusion	Fusion of somatic protoplasts, regeneration of hybrids	Interspecific hybrids (e.g., tomato × potato "pomato")	Karp et al., 1987
Secondary-metabolite production	Cell-suspension or hairy-root cultures in bioreactors	Constant supply of paclitaxel (Taxus), shikonin (Lithospermum)	Dörnenburg and Knorr, 1995
Conservation & seed- sector back-ups	Slow-growth storage, cryopreservation	Long-term safekeeping of coconut, yam, and <i>Musa</i> germplasm	Rajasekharan and Sahijram, 2015

Areas of application	Tissue culture	Typical outcome/benefit	References
Physiology & stress studies	Controlled in vitro assays	Rapid screening for salt- or drought- tolerant lines or embryogenesis- related studies	Sahu et al., 2023; Nautiyal et al., 2024
Cryopreservation	Orchid preservation in liquid nitrogen for long-term storage	Long-term preservation of germplasm using liquid nitrogen	James Antony et al., 2019
Suspension cultures	Biomass increase of certain cells for the production and enhancement of secondary metabolites	Secondary metabolite production	Lim et al., 2025

LIGHT-EMITTING DIODE (LED) TECHNOLOGY IN PLANT TISSUE CULTURE

Light, both quantity and quality as well as photoperiod, are the most important factors influencing the light-induced responses in plants responsible for growth and development under artificial culture conditions. Illumination is essential for the induction of photosynthesis and photomorphogenic responses in a controlled environment (Batista et al., 2018; Murthy et al., 2024). Artificial light sources have long been used in PTCs and growth rooms, including FL, such as cold cathode fluorescent lamps (Ding et al., 2010), high pressure sodium lamps (HP-Na) and plasma lamps were used for comparison of cucumber production by Guo et al. (2016), MHL and IL light by Dutta Gupta and Jatothu, (2013). However, they were replaced by LED technology due to several disadvantages, which include the generation of more heat, energy consumption and differences in absorption spectra that hinder plant growth under in vitro conditions (Xu et al., 2016).

On the other hand, the use of LED technology in PTC is advantageous in terms of longevity, space saving, lower heat dissipation and no use of mercury (Shukla et al., 2017; Batista et al., 2018; Ying et al., 2020; Gnasekaran et al., 2021). LEDs have been proposed as a primary light source for space-based plant research chambers and as a potential replacement light source for plant growth and development in vitro to achieve the success of commercial LED lighting (Bello-Bello et al., 2017; Barceló-Muñoz et al., 2022). So far, many plants have been tested under LED, for example Momordica cochinchinensis, Ficus carica var. 'Black Jack', Zingiber officinale var. rubrum Theilade, Hylocereus costaricensis, Cucumis metuliferus and white strawberry (Lim et al, 2020; Gnasekaran et al, 2021; Parab et al, 2021; Winson et al, 2021; Lai et al, 2022; Pang et al,

2023a, 2023b), the spectra produced by LEDs will have uniform intensity and quality, which is a better source for plant growth and development. Developing an ideal lighting system with optimal light intensity, best lighting position and lighting times while saving energy is the most important goal in this field.

INDOOR VERTICAL FARMING

One of the global threats at present is global warming and the associated climate change. Greenhouse gas emissions such as carbon dioxide (CO₂), which is released when fossil fuels are burned, and other gases such as nitrous oxide. methane and chlorofluorocarbons contribute to global warming. As a result, the temperature and precipitation in the Earth's atmosphere are disturbed, which is exacerbated by anthropogenic activities (Malhi et al., 2021). This in turn affects agriculture and its production, leading to lower yields, higher prices and reduced food availability, which in turn leads to food insecurity. This is exacerbated by the unprecedented increase in population at an alarming rate and the loss of agricultural land to urbanisation.

It will therefore become even more difficult in the coming years to find suitable land for agriculture to meet the growing demand for food (Arora, 2019). Therefore, alternatives should be explored to maximise yield in a sustainable and Controlled promising way. environment farming systems, such as vertical farming (VF) and indoor farming, have the potential to increase production in the most sustainable way possible without compromising yield and quality (Avendaño-Abarca et al., 2022). VF can be defined as a multi-tiered production system where yield is a function of area. Sharathkumar et al (2020): "A multi-tiered indoor crop production system in which all growth factors such as light, temperature, humidity, CO2 concentration, water and nutrients are precisely

controlled to produce high quantities of highquality fresh produce throughout the year, completely independent of sunlight and other outdoor conditions". Depending on the needs and requirements. VFs have different facilities such as plant factories with artificial lighting, container farms, in-store farms and equipment (Butturini and Marcelis. Avendaño-Abarca et al. (2022) have shown that vertical indoor farming increases strawberry in conjunction with production technology, especially with green and red LEDs.

CONCLUSIONS

The field of plant tissue culture plays an important role in the maintenance of germplasm and mass propagation. LED technology also offers immense potential for plants grown *in vitro*. These technological approaches, including LEDs and indoor vertical farming, are therefore recommended to explore further possibilities and ways to maximise yield.

Author contributions

S. Subramaniam conceived the study and supervision. Ay. Ramlal and S. Subramaniam were involved in editing and revisions. Both authors have read and approved the final manuscript.

Data availability statement Not applicable.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publishing

Not applicable.

Competing interests

The authors declare no competing interests.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

REFERENCES

- Altman A., 2003. From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. *In Vitro* Cellular & Developmental Biology-*Plant*, 39, 75-84.
- Altpeter F., Springer N. M., Bartley L. E., Blechl A. E., Brutnell T. P., Citovsky V., et al., 2016. Advancing

- crop transformation in the era of genome editing. *The Plant Cell*, 28, 1510-1520.
- Arora N. K. 2019. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2, 95-96.
- Avendaño-Abarca V. H., Alvarado-Camarillo D., Valdez-Aguilar L. A., Sánchez-Ortíz E. A., González-Fuentes J. A., Cartmill A. D., 2022. Response of strawberry to the substitution of blue light by green light in an indoor vertical farming system. *Agronomy*, 13(1), 99.
- Bairu M. W., Aremu A. O., Van Staden J., 2011. Somaclonal variation in plants: causes and detection methods. *Plant Growth Regulation*, 63, 147-173.
- Batista D. S., Felipe S. H. S., Silva T. D., de Castro K. M., Mamedes-Rodrigues T. C., Miranda N. A., et al. 2018. Light quality in plant tissue culture: does it matter?. In Vitro Cellular & Developmental Biology-Plant, 54, 195-215.
- Bello-Bello J. J., Pérez-Sato J. A., Cruz-Cruz, C. A. Martínez-Estrada, E., 2017. Light-emitting diodes: Progress in plant micropropagation. In: Jacod-Lopes, E., Zepka, L.Q., & Queiroz, M. I. (Eds) 6(1), IntechOpen, Croatia, 93-103.
- Bidabadi S. S., Jain S. M., 2020. Cellular, molecular, and physiological aspects of *in vitro* plant regeneration. *Plants*, 9, 702.
- Bishnoi P., Ramlal A., Raju D., Saini M., Mallikarjuna B. P., Pushpa R., Rajendran A., 2025. *In vitro* culture of soybean (*Glycine max* (L.) Merr.): challenges and solutions. *Journal of Crop Improvement*, 1-26.
- Butt S. J., Varis S., Nasir I. A., Sheraz S., Shahid, A. 2015.
 Micro propagation in advanced vegetable production:
 a review. Advancements in Life Sciences, 2, 48-57.
- Butturini M., Marcelis L. F., 2020. Vertical farming in Europe: Present status and outlook. In: Kozai, T., Niu, G., & Tokagaki, M. (Eds), *Plant factory*, Elsevier, Amsterdam, The Netherlands, 77-91.
- Cavallaro V., Pellegrino A., Muleo R., Forgione I., 2022. Light and plant growth regulators on in vitro proliferation. Plants, 11, 844.
- Ding Y., He S., da Silva J. A. T., Li G., Tanaka M. 2010. Effects of a new light source (cold cathode fluorescent lamps) on the growth of tree peony plantlets *in vitro*. *Scientia Horticulturae*, 125, 167-169.
- Dörnenburg H., Knorr D., 1995. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 17, 674-684.
- Dutta Gupta S., Jatothu, B., 2013. Fundamentals and applications of light-emitting diodes (LEDs) in *in vitro* plant growth and morphogenesis. *Plant Biotechnology Reports*, 7, 211-220.
- El-Sherif N. A., 2018. Impact of plant tissue culture on agricultural sustainability. Sustainability of Agricultural Environment in Egypt: Part II: Soil-Water-Plant Nexus, 93-107.
- Evans D. A., Flick C. E., 1983. Protoplast fusion: Agricultural applications of somatic hybrid plants. In: Kosuge T., Meredith C.P., Hollaender A., Wilson C.M. (Eds), Genetic engineering of plants: An agricultural perspective, Springer, US, Boston, MA, 271-288.

- Gaikwad A. V., Singh S. K., Gilhotra R., 2017. Plant tissue culture-A review. *Journal of Pharmaceutical Research & Education*, 2, 217-220.
- Gnasekaran P., Rahman Z. A., Chew B. L., Appalasamy S., Mariappan V., Subramaniam S., 2021. Development of micropropagation system of Zingiber officinale var. rubrum Theilade using different spectrum light-emitting diode (LED) irradiation. Industrial Crops and Products, 170, 113748.
- Guo X., Hao X., Zheng J. M., Little C., Khosla S., 2016. Effects of plasma vs. high pressure sodium lamps on plant growth, fruit yield and quality in greenhouse cucumber production. In VIII International Symposium on Light in Horticulture, 1134, pp. 79-86.
- James Antony J. J., Zakaria S., Zakaria R., Anak Ujang J., Othman N., Subramaniam S., 2019. Biochemical analyses of *Dendrobium* Sabin Blue PLBs during cryopreservation by vitrification. *Physiology and Molecular Biology of Plants*, 25, 1457-1467.
- Karp A., Jones M. G., Ooms G., Bright S. W., 1987.
 Potato protoplasts and tissue culture in crop improvement. Biotechnology and Genetic Engineering Reviews, 5, 1-32.
- Krishna R., Ansari W. A., Khandagale K., Benke A. P., Soumia P. S., Manjunathagowda D. C., et al. 2022. Meristem culture: a potential technique for in vitro virus-free plants production in vegetatively propagated crops. In: Rai A.C., Kumar A., Modi A., Singh, M. (Eds) Advances in plant tissue culture: Current developments and future trends, Academic Press, 325-343.
- Kumar R., Singh R. K., Shah A., Srivastava A. K., Singh U. P., Agarwal A., 2024. Banana Cultivation and Micropropagation in India: Addressing Challenges and Exploring Future Prospects. *Biosciences Biotechnology Research Asia*, 21, 1383-1395.
- Lai C. S., Kho Y. H., Chew B. L., Raja P. B., Subramaniam S., 2022. Organogenesis of *Cucumis metuliferus* plantlets under the effects of LEDs and silver nanoparticles. *South African Journal of Botany*, 148, 78-87.
- Lim C. H., Guan T. S., Chan Hong E., Lit Chow Y., Lynn C. B., Subramaniam S., 2020. Effect of different LED lights spectrum on the *in vitro* germination of gac seed '(Momordica cochinchinensis)'. Australian Journal of Crop Science, 14, 1715-1722.
- Lim W. H., Khaw M. L., Yungeree O., Hew W. H., Parab A. R., Chew B. L., et al., 2025. Effects of LEDs, macronutrients and culture conditions on biomass and artemisinin production using Artemisia annua L. suspension cultures. Biotechnology Progress, e70041.
- Livadariu O., Maximilian C., Rahmanifar B., Cornea C. P., 2023. LED technology applied to plant development for promoting the accumulation of bioactive compounds: a review. *Plants*, 12, 1075.
- Malhi G. S., Kaur M., Kaushik P., 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13, 1318.
- Murthy H. N., Joseph K. S., Paek K. Y., Park S. Y., 2024. Light as an elicitor for enhanced production of secondary metabolites in plant cell, tissue, and organ cultures. *Plant Growth Regulation*, 104, 31-49.

- Naik P. S., Buckseth, T., 2018. Recent advances in virus elimination and tissue culture for quality potato seed production. In: Gosal, S., Wani, S. (eds), Biotechnologies of Crop Improvement, Volume 1: Cellular Approaches, Springer, Cham, 131-158.
- Nautiyal A., Ramlal A., Agnihotri A., Rashid A., 2023. Stress-induced somatic embryogenesis on seedlings of *Azadirachta indica* A. Juss. by thidiazuron and its inhibition by ethylene modulators. *Plant Cell, Tissue and Organ Culture*, 153, 357-366.
- Negi S., Singh P., Trivedi V. L., Rawat J. M., Semwal, P., 2024. The current trends and research progress globally in the plant tissue culture: 90 years of investigation. *Plant Cell, Tissue and Organ Culture*, 157, 73.
- Niazian M., Shariatpanahi M. E., 2020. *In vitro*-based doubled haploid production: recent improvements. *Euphytica*, 216(5), 69.
- Pang W. Q., Tan S. T., Mad'Atari M. F., Yoong I. C. K., Subramaniam S. 2023a. Establishment of an efficient micropropagation protocol for Cameron Highlands White Strawberry (*Fragaria × ananassa*) using light emitting diodes (LEDs) system. South African Journal of Botany, 157, 189-200.
- Pang W. Q., Lai C. S., Mad'Atari M. F., Pandian B. R., Ibrahim M. N. M., Tan S. T., et al., 2023b. Effect of graphene oxide nanoparticles on in vitro growth of Fragaria × ananassa (Cameron Highlands white Strawberry) and evaluation of genetic stability using DAMD and ISSR markers. Plant Physiology and Biochemistry, 204, 108104.
- Parab A. R., Han K. Y., Chew B. L., Subramaniam S., 2021. Morphogenetic and physiological effects of LED spectra on the apical buds of *Ficus carica* var. Black *Scientific Reports*, 11, 1-11.
- Raj D. M., Perumal K., Balakrishnan K., Subramaniam S., 2024. Revitalizing Cocos nucifera L var matag: unravelling new horizons in clonal propagation through organogenesis and LED illumination. Plant Cell, Tissue and Organ Culture, 158, 36.
- Rajasekharan P. E., Sahijram, L., 2015. In vitro conservation of plant germplasm. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (Eds) Plant biology and biotechnology: volume II: plant genomics and biotechnology, Springer, New Delhi, 417-443.
- Ramlal A., Mehta S., Nautiyal A., Baweja P., Shivam Sharma D., et al., 2024. Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit. In Vitro Cellular & Developmental Biology-Plant, 60, 1-15.
- Ramlal A., Sharma D., Lal S. K., Raju D., Shivam, Rajendran A., 2023. First report of ovary-derived calli induction in soybean [Glycine max (L.) Merr.]. Plant Cell, Tissue and Organ Culture, 153, 439-445.
- Sahu M., Maurya S., Jha Z. 2023. In vitro selection for drought and salt stress tolerance in rice: an overview. *Plant Physiology Reports*, 28, 8-33.
- Sena S., Kumari S., Kumar V., Husen A., 2024. Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology, 7, 100184.

- SharathKumar M., Heuvelink E., Marcelis L. F., 2020. Vertical farming: moving from genetic to environmental modification. *Trends in Plant Science*, 25, 724-727.
- Shukla M. R., Singh A. S., Piunno K., Saxena P. K., Jones A. M. P., 2017. Application of 3D printing to prototype and develop novel plant tissue culture systems. *Plant Methods*, 13, 1-10.
- Smith M. K., Drew, R. A., 1990. Current applications of tissue culture in plant propagation and improvement. Functional Plant Biology, 17, 267-289.
- Sudheer W. N., Praveen N., Al-Khayri J. M., Jain, S. M., 2022. Role of plant tissue culture medium components. In: Rai A.C., Kumar A., Modi A., Singh M., (Eds), Advances in plant tissue culture: Current

- developments and future trends, Academic Press, 51-83.
- Winson K. W. S., Chew B. L., Sathasivam K., Subramaniam S., 2021. Effect of amino acid supplementation, elicitation and LEDs on *Hylocereus* costaricensis callus culture for the enhancement of betalain pigments. Scientia Horticulturae, 289, 110459.
- Xu Y., Chang Y., Chen G., Lin H., 2016. The research on LED supplementary lighting system for plants. *Optik*, 127(18), 7193-7201.
- Ying Q., Kong Y., Jones-Baumgardt C., Zheng Y., 2020. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. *Scientia Horticulturae*, 259, 108857.