THE EFFECT OF PHOTOVOLTAIC SYSTEMS ON BERRIES PRODUCTION. A REVIEW

Lavinia-Mihaela UDREA (ILIESCU), Mirela Florina CĂLINESCU, Ivona Cristina MAZILU, Emil CHIŢU, Florin PLĂIAŞU

Research Institute for Fruit Growing Pitești - Mărăcineni, 402 Mărului Street, 117450, Mărăcineni, Pitești, Argeș County, Romania

Corresponding author emails: elacalinescu@yahoo.com, icmazilu@yahoo.com

Abstract

Presently, there is a growing interest in berry production, particularly in developing innovative and resilient agricultural practices that align with consumer expectations for superior flavors and nutritional value. The yielding and quality of berries fruits are influenced by various abiotic and biotic stress factors, and closely monitoring of these can lead to significant improvements regarding production and fruit quality. Photovoltaic systems provide an innovative approach to improving the use of natural and anthropic resources, reducing the negative impacts of climate change, and enhancing environmental protection. In recent years, various studies have recognized the important benefits of photovoltaic systems in fruit production such as – reducing energy costs, decreasing carbon emissions at the farm level, preserving water resources, offer shelter for beneficial organisms, and improve fruit quality in terms of appearance and nutritional matter. This study aims to provide an extensive review of the current knowledge on the opportunities and advantages of photovoltaic systems for berry crops, with a particular focus on red currants. It explores their role in optimizing growth and fruiting, enhancing resource efficiency, and reducing abiotic stress – such as sunburn for example.

Key words: abiotic stress factors, innovative cropping systems, red currant, resilient agriculture, sustainable farming.

INTRODUCTION

Recent studies indicate a growing interest in berry production (Aguilera, 2024; Bezerra et al., 2024; Ertekin et al., 2024; Mezzetti, 2016), with a particular focus on developing innovative and resilient cropping systems (Andersson et al., 2024; Dane et al., 2016; Takeda & Soria, 2011; Udrea et al., 2024) that meet consumer demands for enhanced fruits taste and nutritional quality (Diamanti et al., 2012; Dobson et al., 2012; Fontanesi, et al., 2012; Heide & Sønsteby, 2012; Kruger et al., 2011; Mezzetti, 2016).

The production and quality of berries are influenced by various abiotic and biotic stressors (Alvarado-Raya et al, 2018; Dragišić Maksimovi et al, 2018; Laugale et al., 2018; Lepaja et al., 2018; Massetani et al., 2014; Poyraz Engin & Mert, 2018; Winardiantika et al., 2014; Yang et al., 2018; Zucchi et al., 2014), and closely monitoring of these factors can lead to significant improvements regarding yield and fruit quality (Bamouh et al, 2019; Çelik, 2018; Cho et al, 2019; Kandemir et al,

2018; Palha et al., 2018). Considering the challenges in berry production, climate change, and resource management, farmers are increasingly seeking new technological solutions (Okatan & Aşkın, 2017; Pitsioudis et al., 2008).

Also, in the context of the climate and energy targets, European Green Deal aims to achieve, with a long-term goal of net-zero greenhouse gas emissions by 2050, while supporting energy independence and economic growth (Chatzipanagi et al., 2023; Lee et al., 2023; Strapasson et al., 2017). Thus, in line with the post-2020 Common Agricultural Policy for climate adaptation and sustainability, solar photovoltaic power provides a sustainable solution (Mihălcioiu et al., 2024; Miloș et al., 2022; Mouhib et al., 2022a). Despite its photovoltaic systems benefits. require extensive land use, competing with agriculture (Ritchie & Roser, 2013; Victoria et al., 2021). To balance renewable energy expansion and food production, agrivoltaics systems offer an advanced solution (Dupraz et al., 2020; Roxani et al., 2023). By combining solar panels with

farmland, agrivoltaics systems enables dual land use for both agriculture and energy production, particularly beneficial in land-scarce regions (Bonomi et al., 2021; Sahu et al., 2020). This approach can improve land efficiency, reduce water consumption, enhance crop yields, and minimize soil erosion, contributing to food security and energy sustainability (Roxani et al., 2023; Trommsdorff et al., 2022a).

This review explores the various applications of photovoltaic systems in berry production, with a particular focus on red currants. It examines the potential benefits, while also addressing the challenges associated with implementation. By analyzing recent research and case studies, this study aims to provide insights into how photovoltaic systems can transform both the agricultural and energy sectors, paving the way for a more sustainable and resilient future.

MATERIALS AND METHODS

This review was conducted using a systematic approach to identify, analyze, and synthesize relevant scientific literature on the application of photovoltaic systems in berry production, with a particular focus on red currants.

Literature search strategy – a comprehensive literature search was conducted using scientific databases, including Web of Science, Scopus, PubMed, Open Access Journals, ResearchGate, MDPI, and Google Scholar. The search utilized keywords such as - photovoltaic systems in horticulture, agrivoltaics in berries production, solar energy and fruit crops, sunburn prevention in fruit trees plantation, among others.

Selection criteria – studies were included in the review based on their relevance to photovoltaic applications, especially in fruit production, and particularly in berry crops.

Data extraction and analysis - selected studies were categorized based on their primary focus on technological advances in the field of agrivoltaics systems: definition classification of agrivoltaics systems; applications of photovoltaic systems technology in agriculture and a global perspective of this; challenges and limitations of implementing agrivoltaics system and selection of the optimal ones; the characteristics for selecting crops agrivoltaics systems and the performance evaluation indicators; types of agrivoltaics systems where studies were conducted and results; the leading role of photovoltaic systems in berries production improvement; abiotic and biotic stress factors affecting red currants cultivation; the primary benefits photovoltaic systems in red currant cultivation technology.

Key findings were summarized in a comparative framework to highlight the current knowledge and the advantages of photovoltaic systems for berry crops.

RESULTS AND DISCUSSIONS

Agrivoltaics systems, which consist combining production through energy photovoltaic systems and agricultural production in the same area, have emerged as a promising solution to the constraints related to the reduction of cultivated areas due to the use panels instead of agricultural of solar production systems (Chalgynbayeva et al., 2023; Thompson et al., 2020; Trommsdorff et al., 2022a).

Historical agrivoltaics systems development

The concept of photovoltaic systems (PV) was first introduced by Götzberger and Zastrow in 1981, combining PV modules with potato production (Goetzberger et al., 1981).

As photovoltaic technology evolved and became more accessible (Trommsdorff et al., 2022a), the way was opened for the development of more advanced agrivoltaics systems. In Table 1 it is presented a brief history of the agrivoltaics systems development.

Classification of agrivoltaics systems

In general, an agrivoltaics system consists of a photovoltaic solar panel, a mounting/support structure, a foundation, a control and monitoring system, and the cultivated crops (Sahu et al., 2016). In recent years, several classifications of agrivoltaics systems have emerged (Sirnik et al., 2023; Trommsdorff et al., 2022a). In Table 2 are categorizes agrivoltaics systems based on different criteria, providing types and relevant references.

SWOT analysis of agrivoltaics systems – a global perspective

The main environmental and economic benefits of agrivoltaics systems include sustainability advantages such as reducing the carbon footprint, generating renewable energy, and preserving biodiversity (Al Mamun et al., 2022; Zahrawi & Aly, 2024). Additionally, they enhance economic viability by providing costbenefit advantages for farmers, lowering energy expenses, and improving land use efficiency (Al Mamun et al., 2022; Zahrawi & Ali, 2024). Moreover, agrivoltaics systems play a crucial role in balancing renewable energy production with food security, ensuring a sustainable and profitable agricultural model (Al Mamun et al., 2022; Zainol Abidin et al., 2021). Table 3 presents the Strengths, Weaknesses, Opportunities, and Threats of agrivoltaics utilization.

Selection of the optimal agrivoltaics system

Before selecting the solar panel design and crop type, agrivoltaics system design must be aligned with the climatic factors of the intended crop to determine the optimal configuration (Ali, 2024; Hermelink et al., 2024; Stallknecht et al., 2023; Zahrawi & Aly, 2024; Wielgat et al., 2024).

AVS design requires a transdisciplinary approach (Ioannidis et al., 2020; Lee et al., 2023; Sargentis et al., 2021), and different optimization strategies must be implemented depending on the system's primary objective (Macknick et al., 2013; Trommsdorff et al., 2022b; Zainol Abidin et al., 2021). Toledo and Scognamiglio (2021) identified three fundamental categories: minimizing crop shading, maximizing electricity generation, and ensuring social acceptance.

Table 1	. Technologica	l advances ir	the field	of Agrivoltaic	s Systems	(AVS)
I abic I	. I comologica	advances ii.	i tiic iiciu	of Agirvoltaic	o bysicins	$(A \lor B)$

Year	Country	Details	References
1981	Germany	Concept of dual land use for solar energy and agriculture	Goetzberger & Zastrow, 1981
2004	Japan	Experimental AVS for crop protection	Maruyama et al., 2004; Tajima & Iida, 2021; Toledo & Scognamiglio, 2021
2011	France	Large-scale agrivoltaics farm implementation	Dupraz et al., 2011a
2012	Italy	First commercial AVS installed	Amaducci et al., 2018; Roxani et al., 2023
2013	South Korea	Floating AVS for rice farming	Chae et al., 2013
2016	India	Agrivoltaics for water conservation in dry climates	Dinesh & Pearce, 2016b; Trommsdorff et al., 2022 a
2017	Italy	Integration of AVS in grapes plantations	Amaducci & Yin, 2017
2017 2018	Belgium	AVS in orchard and designs (KU Leuven)	Trommsdorff et al., 2022a; Willockx et al., 2020b
2018	Italy	Elevated AVS structures on different crops	Amaducci et al., 2018
2019	China	Implementation of shading strategies for vegetable crops	Liu et al., 2019
2020	USA	AVS for berries production	Sekiyama & Nagashima, 2020
2021	Australia	Dual-use of AVS for livestock and pastureland	Barron-Gafford et al., 2021
2022	Netherlands	AI and sensor-integrated agrivoltaics systems	Weselek et al., 2022
2023	Germany	The largest AVS in the world (13 hectares)	Chalgynbayeva et al., 2023
2023	Spain	Large-scale agrivoltaics for staple crops (wheat, corn)	Sarr et al., 2023a

Table 2. Classification of Agrivoltaics Systems (AVS)

Criteria	Туре	References		
DVl-	Fixed-tilt	Dupraz et al., 2011b; Hassanpour et al., 2018a; Younas et al., 2019		
PV panels	Dynamic/Tracking	Amaducci et al., 2018; Sekiyama & Nagashima, 2019 a		
design	Vertical bifacial	Weselek et al., 2021a; Trommsdorff et al., 2021a		
PV panels	Opaque	Dinesh & Pearce, 2016b; Domínguez et al., 2017; Sirnik et al., 2023		
transparency	Semi-transparent	Fernández et al., 2022; Hernandez et al., 2014; Mouhib et al., 2022b; Sirnik et al., 2023; Thompson et al., 2020		
I	Fully Integrated AVS	Barron-Gafford et al., 2019; Majumdar & Pasqualetti, 2021		
Integration	Semi-Integrated AVS	Santra et al., 2017; Schindele et al., 2020		
level	Adjacent PV Installations	Chiriacò et al., 2022, Dinesh & Pearce, 2016a		
	Energy (priority on electricity production)	Maity et al., 2023a, b; Mouhib et al., 2022a		
Aim	Crop-integrated AVS (balanced crop & energy output)	Amaducci et al., 2018; Dupraz et al., 2011a, 2011b		
of installation	Yield optimization	Amaducci et al., 2018; Majumdar & Pasqualetti, 2021		
	Water conservation	Barron-Gafford et al., 2019; Trommsdorff et al. 2021a		
	Small-scale AVS farms (localized energy & crop use)	Barron-Gafford et al., 2019; Maity et al., 2023a, b; Sekiyama &		
Scale of		Nagashima 2019a, 2019b, 2019c		
implementation	Large-scale AVS projects (commercial-level production)	Amaducci et al., 2018; Weselek et al., 2019; Weselek et al., 2021a, 2021b, 2021c, 2021d		

Criteria	Туре	References	
Geographical	Arid & Semi-Arid Regions	Barron-Gafford et al., 2019; Hassanpour et al., 2018a; Trommsdorff et al., 2021a	
adaptation	Temperate & Humid Regions	Amaducci et al., 2018; Chiriacò et al., 2022; Maity et al., 2023a, b; Weselek et al., 2021c, 2021d, 2021e	
Integration with	Elevated AVS (panels above crops)	Barron-Gafford et al., 2019; Dinesh & Pearce, 2016b	
crops	Inter-row AVS (panels between rows)	Hassanpour Adeh et al., 2018; Hernandez et al., 2014	
Crop type	Pastures & Forage	Hassanpour et al., 2018a; Weselek et al., 2021a, 2021b, 2021c, 2021d	
	Vegetable & Row Crops	Dinesh & Pearce, 2016a, 2016b; Hernandez et al., 2014; Marrou et al., 2013b; Sekiyama & Nagashima 2019 a, 2019b, 2019c	
	Vineyards, Berries & Orchards	Dupraz et al., 2011a, 2011b; Santra et al., 2017; Trommsdorff et al., 2021b; Weselek et al., 2021a, 2021b, 2021c, 2021d, 2021e	

Table 3. SWOT analysis of Agrivoltaics Systems (AVS)

·	• , , ,
Strengths (Advantages)	Weaknesses (Disadvantages)
⊕ Dual land use for agriculture and energy production – AVS	High initial investment costs – The installation and maintenance of
maximize land efficiency by enabling both crop cultivation and solar	AVS require significant capital investment, which may not be feasible
energy production (Dupraz et al., 2011b; Maity et al., 2023a, b;	for all farmers (Giri & Mohanty, 2022a, b; Weselek et al., 2019).
Naamandadin et al., 2018).	QUnpredictable effects on long-term regarding plants growth and
Contribution to reducing carbon emissions and promoting	soil health – Additional research is necessary to assess the long-term
renewable energy - AVS lower reliance on fossil fuels, reducing	ecological AVS impact (Maity et al., 2023a, b; Weselek et al., 2021a).
greenhouse gas emissions (Blakers et al., 2013; Leon & Ishihara,	Q Possible reduction in sunlight exposure affecting crop yields – In
2018).	some cases, excessive shading may limit photosynthesis and can reduce
**Long-term financial benefits – Farmers can benefit from lower	potential yield of certain crops (Barron-Gafford et al., 2019; Erwin et
energy costs and additional income from selling excess electricity	al., 2017; Maity et al., 2023a, b; Touil et al., 2021).
(Mouhib et al., 2022a; Solangi et al., 2011).	Requires specialized knowledge and management – AVS demand
• Improved microclimate for plant growth – Moderate shading and	expertise in both energy management and agricultural practices to
temperature regulation can create a favorable environment (Barron-	optimize their benefits (Dinesh & Pearce, 2016a).
Gafford et al., 2019; Weselek et al., 2021a, b, c, d).	Q Potential challenges in farm equipment operation under panel
Enhance water-use efficiency and reduction of evaporation – PV	structures – The presence of solar panels may restrict access to
systems provide shade, reducing water requirements for crops and	mechanized farm equipment (Amaducci et al., 2018; Reasoner &
evaporation (Dupraz et al., 2011b; Hassanpour Adeh et al., 2018).	Ghosh, 2022).
Protection of crops from extreme weather conditions – PV act as	Regulatory and legal restrictions in some regions - Land-use
a physical barrier, reducing damage from weather extremes such as hail, excessive heat, heavy rainfall (Aroca-Delgado et al., 2018; Dupraz	policies and zoning regulations may pose barriers to agrivoltaics
et al., 2011b; Hassanpour et al., 2018a, b; Jamil & Pearce, 2023; Ruiz-	expansion (Dupraz et al., 2011b; Maity et al., 2023a, b; Randle-Boggis
Canales et al., 2022; Weselek et al., 2021a, b, c).	et al., 2021; Reasoner & Ghosh, 2022).
** Increasing efficiency of solar panels – The crops under PV would	Reduced solar energy output – Installing solar panels over crops
circulate cool air to reduce the temperature to make panels work	can limit direct sunlight exposure, decreasing electricity generation per
optimally. High insolation, light winds, moderate temperature, and low	unit area and, additionally, crop shading may cause temperature
humidity keep the panel's microclimate suitable for growing crops and	variations in the panels, reducing solar cell efficiency (Macdonald et
increase panel efficiency (Ezzaeri et al., 2018; Sirnik et al., 2023).	al., 2022; Randle-Boggis et al., 2021).
Opportunities	Threats
The Increasing global demand for sustainable farming solutions -	▲ Policy changes and uncertain government incentives – Changes
Climate change concerns and sustainable agriculture initiatives drive	in subsidies and regulatory frameworks could impact the economic
interest in agrivoltaics (Hernandez et al., 2014; Maity et al., 2023a).	viability of AVS (Dinesh & Pearce, 2016a).
Tachnological advancements in solar panel efficiency and smart	A Competition with alternative renewable energy and agricultural

- Technological advancements in solar panel efficiency and smart farming integration - Ongoing research is improving the efficiency of agrivoltaics systems (Amaducci et al., 2018; Maity et al., 2023a, b).
- Potential for subsidies and financial support for green energy projects - Governments and international organizations increasingly support renewable energy adoption (Maity et al., 2023a, b).
- Expansion to various crop types beyond berries Research shows that agrivoltaics systems are adaptable to different crops, including vegetables and cereals (Barron-Gafford et al., 2019; Corwin & Johnson, 2019; Gorjian et al., 2022).
- Market advantage for sustainably produced food and energy Consumers increasingly prefer products with a lower carbon footprint (Hernandez et al., 2014).
- Contribute to local agro-economics and generates work places Activities such regular maintenance, vegetation management, system monitoring, panel cleaning, and repairs provide employment opportunities (Corwin & Johnson, 2019; Elavarasan et al., 2020; Prehoda et al., 2019).

For an agrivoltaics system to be efficient, several conditions must be met, as highlighted by Maity et al. (2023a) and Al Mamun et al. (2022): adequate solar radiation (Amaducci et

- ▲ Competition with alternative renewable energy and agricultural technologies (Hernandez et al., 2014).
- ▲ Land use conflicts AVS require significant land, this could lead to conflicts with other land uses, such as urban development, natural habitats, or other agricultural activities (Weselek et al., 2019).
- ▲ Human perceptivity and resistance to land-use modification Communities may oppose AVS due to concerns about landscape goodlooking or land rights (Weselek et al., 2019).
- A Risk of financial losses if system design is not optimized for local conditions (Giri & Mohanty, 2022a, b; Mouhib et al., 2022a).
- A Potential impact of climate change on PV efficiency and crop adaptability - Rising temperatures and extreme weather may affect AVS performance/production (Dupraz et al., 2011b).
- ▲ Extreme weather events AVS may be vulnerable to extreme weather events (Kumpanalaisatit et al., 2022)
- ▲ Pest and disease infestations Introducing PV can create new microclimates that could attract pests and diseases (Elavarasan et al.,

al., 2018); good soil quality (Toledo et al., 2021); flat or gently sloping terrain (Williams et al., 2023); access to water; low wind risk; favorable climate conditions (Dinesh & Pearce,

2016a); sufficient space availability (Sarr et al., 2023b); and suitable land characteristics (Lorencena et al., 2019). The key factors influencing the performance of an agrivoltaics system include the height at which the panels are installed (Goetzberger et al., 1982; Hussain et al., 2017; Sarr et al., 2023a; Sekiyama & Nagashima, 2019a; Trommsdorff et al., 2022b), the panel orientation and tilt angle based on location, time of day, and period of the year (Amaducci et al., 2018; Gorjian et al., 2022; Macknick et al., 2022; Marrou et al., 2013a; Roxani et al., 2023; Sarr et al., 2023a; Scognamiglio et al., 2016; Valle et al., 2017). and the array density (Campana et al., 2021; Macknick et al., 2022; Moreda et al., 2021; Sarr et al., 2023a).

The key characteristics for selecting crops in agrivoltaics systems include the following: shade tolerance (Marrou et al., 2013b), water stress and irrigation requirements, plant height, crop lifespan (considering that photovoltaic systems typically have an operational lifespan of 30 years), pollination systems, biodiversity conservation, and resilience to climate change (Roxani et al., 2023).

The performance evaluation indicators for agrivoltaics systems are divided into two main categories (Lu et al., 2024):

Metric Indicators: these include incident radiation at ground level (Brutsaert, 1982; Roxani et al., 2023), energy efficiency (Roxani et al., 2023), crop yield (Campillo et al., 2012; Sinclair & Muchow, 1999), crop water requirements (Blackett et al., 2019; Roxani et al., 2023), and overall system performance (Roxani et al., 2023; Willockx et al., 2020a).

Economic Indicators: these include the price-performance ratio and electricity price capping (Schindele et al., 2020).

Types of agrivoltaics systems – some studies and results

In recent years, numerous researches have been carried out on the effects of different agrovoltaic systems, on **cereals** (Dupraz et al., 2011a; Jo et al., 2022; Kim et al., 2021; Lee 2022; Moreda et al., 2021; Sekiyama & Nagashima, 2019c;), **green vegetable** (Adomavicius, 2021; Chae et al., 2022; Erwin et al., 2017; Ezzaeri et al., 2018; Jo et al., 2022; Marrou et al., 2013b; Trommsdorff et al., 2022a, b; Weselek et al., 2021d, e), **grapevines**

plants (Ahn et al., 2022; Malu et al.,2017; Maity et al., 2023b) and *fruit trees* (Claudia Hanisch, 2022; Juillion et al., 2020; Magarelli et al., 2024; Trommsdorff et al., 2022a).

In recent years, productivity assessment of some fruit growing species such as apple (Juillion et al., 2021; 2022), pear (Gim et al., 2025; Bellini, 2025; Willockx et al., 2024), peach, nectarine, cherry (Magarelli et al., 2024), kiwifruit (Basile et al., 2008; Jiang et al., 2022), have been evaluated for their suitability for growth under the photovoltaic systems.

The leading role of photovoltaic systems in berries production improvement are: optimizing growth and fruiting processes (microclimate regulation, shade effects, and photosynthesis optimization); improving resource efficiency (soil moisture retention, water conservation, and reduced irrigation needs); protection against abiotic stress (reducing sunburn, buffering temperature extremes, and wind/hail protection); enhancing fruit quality (effects on taste, texture, color, and nutritional value). In Table 4 are synthetized some results regarding the effect of photovoltaic systems on berries production. Figure 1 illustrates some berries plantations cultivated beneath solar panels.

(Source: BayWa r.e)

Figure 1. Photovoltaic systems in berry crop: a) Raspberries; b) Red Currants

Abiotic and biotic stress factors affecting red currants cultivation

The primary factors impacting red currant production include: abiotic stressors: sunburn, drought, extreme temperatures, and soil degradation (Panfilova et al., 2021) and biotic stressors: pests and diseases influenced by environmental changes.

In Figure 2 are presented red currant cultivation climatic limiting factors.

The primary benefits of photovoltaic systems on red currant cultivation technology

Analyzing SWOT analysis presented in Table 3 and red currant requirements for vegetation factors (Figure 2), can be concluded that integrating solar panels into an agrivoltaics system offers numerous benefits for its cultivation such as growth and fruiting, improving resource efficiency, and reducing abiotic stress (Blando et al., 2018; Jung & Salmon, 2022; Jung et al., 2023).

Table 4. Effect of photovoltaic systems on berries production

Species	Results	References	
	The panels with higher transparency, demonstrated promising results regarding fruit quality for 'Sibilla' variety	Dragomir et al., 2024	
Strawberries	The shading from the semi-transparent PV increased the total phenolic content, as well as the free radical-scavenging activity of the harvested fruits	Petrakis et al., 2024	
	Increased fruit quality due to optimized light exposure and reduced heat stress	Weselek et al., 2021d, e	
	Enlarged yield and reduced water consumption under agrivoltaics shading	Amaducci et al., 2018	
Blackberries	Improved productivity due to regulated microclimate and extended growing season	Magarelli et al., 2024; Maity et al., 2023a; Sarr et al., 2023 c	
	Extended harvesting period, improved fruit color and sugar content	Dinesh & Pearce, 2016 a, b;	
Raspberries	Enhanced photosynthesis efficiency, reduced heat stress, and increased fruit size	Marrou et al., 2013; Sekiyama & Nagashima, 2019b	
	Decreased sunburn damage and better preservation of fruit firmness and color	Dupraz et al., 2011; Jamil & Pearce, 2023	
Blueberries Enhanced fruit quality, improved water-use efficiency, and protect against extreme weather conditions		Adeh et al., 2019; Barron-Gafford et al., 2019; Hassanpour et al., 2018b; Hermelink et al., 2024; Majidi et al., 2023	
Red	Higher antioxidant content, improved resource efficiency, and better fruit appearance	Weselek et al., 2021d, e	
currants	Enhanced photosynthetic efficiency and improved fruit size and taste	Aroca-Delgado et al., 2018; Ruiz- Canales et al., 2022	
Black currants	Higher sugar content and improved fruit coloration under agrivoltaics systems	Maity et al., 2023a, b; Weselek et al., 2021a, b, c	
	Protection from sunburn and increased shelf life	Obergfell et al., 2021	
Gooseberries	Better protection from frost and extreme weather, leading to stable yields	Lorencena et al., 2019; Toledo et al., 2021	
Carlanta	Lower water consumption and stabilized temperature in cultivation areas	Touil et al., 2022	
Cranberries	Increased resistance to drought stress and improved water conservation	Dinesh et al., 2016b; Williams et al., 2023	
	Higher vitamin C content and improved frost resistance	Trommsdorff et al., 2021b	
Lingonberries	Enhanced fruit quality and antioxidant content due to optimized shading	Sahu et al., 2016; Sarr et al., 2023c	
Elderberries	Improved fruit set and resistance to pests due to favorable microclimate	Hassanpour et al., 2018a	

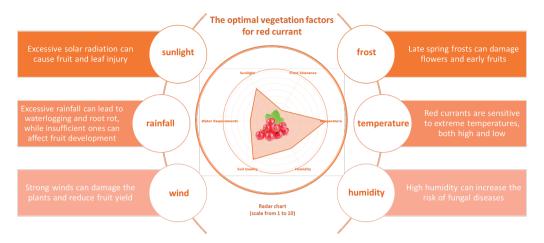


Figure 2. The main climatic limiting factors for red currant cultivation (Source: original)

The primary benefits of PV systems in fruit berries growing technology include protection against hail, frost, and drought, as well as providing partial shading, which is essential for species sensitive to direct sunlight, such as currants.

CONCLUSIONS

The integration of photovoltaic systems in berry production offers a promising path toward sustainable and resilient agriculture. By optimizing resource use, reducing climaterelated stress, and improving fruit quality, agrivoltaics solutions can play a vital role in the future of horticulture. Advancements in technology, including smart PV systems, AIdriven monitoring, and precision agriculture, will be essential for enhancing efficiency, scalability, and long-term benefits. These innovations will further support sustainability, making berry production more adaptable to challenges while environmental ensuring economic viability for farmers.

ACKNOWLEDGEMENTS

This research was carried out with the support of the Ministry of Agriculture and Rural Development, financed through Project 'The use of autonomous energy systems for digitalization of technological sequences specific to precision fruit growing', ADER 6.3.23/2023.

REFERENCES

Adeh, E. H., Good, S. P., Calaf, M., Higgins, C. W. (2019). Solar PV power potential is greatest over croplands. Scientific Reports, 9, 11442.

Adomavicius, V. (2021). Review of results of agrophotovoltaic system implementation in agriculture. Proceedings of International Conference on Engineering for Rural Development, 605-610.

Aguilera, J. M. (2024). Berries as foods: processing, products, and health implications. *Annual Review of Food Science and Technology*, 15.

Ahn, S. Y., Lee, D. B., Lee, H. I., Myint, Z. L., Min, S. Y., Kim, B. M., Oh, W., Jung, J.H., Yun, H. K. (2022). Grapevine growth and berry development under the agrivoltaic solar panels in the vineyards. *Journal of Bio-Environment Control*, 31(4), 356-365.

Al Mamun, M. A., Dargusch, P., Wadley, D., Zulkarnain, N. A., Aziz, A. A. (2022). A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews, 161, 112351.

Ali, N. (2024). Agrivoltaic system success: A review of parameters that matter. *Journal of Renewable and Sustainable Energy*, 16(2). DOI 10.1063/5.0197775.

Alvarado-Raya, H. E., Rivera-del-RÃo, R., RamÃrez-Arias, A., Calderón-Zavala, G. (2018). Vegetative growth for three Mexican strawberry cultivars grown in two bed systems. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 171-178.

Amaducci, S., Yin, H. (2017). Integration of agrivoltaics in viticulture: Effects on crop growth and solar energy generation. *Renewable Energy*, 112, 487-496. https://doi.org/10.1016/j.renene.2017.05.070.

Amaducci, S., Yin, X., Colauzzi, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. *Applied Energy*, 220, 545–561.

Andersson, J., Plummer, P., Lennerfors, T. et al. (2024). Socio-techno-ecological transition dynamics in the re-territorialization of food production: the case of wild berries in Sweden. Sustainability Science, 1-16.

- Aroca-Delgado, R., Pérez-Alonso, J., Callejón-Ferre, Á. J., Velázquez-Martí, B. (2018). Compatibility between crops and solar panels: An overview from shading systems. Agricultural Systems, 167, 92-100.
- Bamouh, A., Bouras, H., Nakro, A. (2019). Effect of foliar potassium fertilization on yield and fruit quality of strawberry, raspberry and blueberry. *Acta Hortic*, 1265, 255-262.
- Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., Thompson, M., Dimond, K. S., Gerlak, A. K., Nabhan, G. P., Macknick, J. (2019). Agrivoltaics provide mutual benefits across the food—energy—water nexus in drylands. *Nature Sustainability*, 2(9), 848–855.
- Barron-Gafford, G. A., et al. (2021). Dual-use agrivoltaics for livestock and pastureland. *Nature Sustainability*, 4(3), 232-239.
- Basile, B.; Romano, R. Giaccone, M. Barlotti, E. Colonna, V. Cirillo, C. Shahak, Y. Forlani, M. (2008). Use of Photo-Selective Nets for Hail Protection of Kiwifruit Vines in Southern Italy. *Acta Hortic.*, 770, 185–192.
- Bellini, E. Agrivoltaics for Pear Orchards. Available online: https://www.pv-magazine.com/2020/10/02/ agrivoltaics-for-pear orchards/.
- Bezerra, M., Ribeiro, M., Cosme, F., Nunes, F. (2024). Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Comprehensive Reviews. Food Science and Food Safety, 23, e13354.
- Blackett, D. T., Thompson, M., Dimond, K. S., Gerlak, A. K., Nabhan, G. P., Macknick, J. (2019). Agrivoltaics provide mutual benefits across the food–energy-water nexus in drylands. *Nat. Sustain.*, 2(9), 848–855.
- Blakers, A., Zin, N., McIntosh, K., Fong, K. (2013). High efficiency silicon solar cells. *Energy Procedia*, 33.
- Blando, F., Gerardi, C., Renna, M., Castellano, S., Serio, F. (2018). Characterisation of bioactive compounds in berries from plants grown under innovative photovoltaic greenhouses. *Journal of Berry Research*, 8(1), 55-69.
- Bonomi, S., Sarti, D., Sordi, L. (2021). Agrivoltaics as an integrated approach for energy and food security. Sustainability, 13(9), 5159.
- Brutsaert, W. (1982). Evaporation into the Atmosphere; Springer: Dordrecht, The Netherlands.
- Campana, P.E., Stridh, B., Amaducci, S., Colauzzi, M. (2021). Optimisation of vertically mounted agrivoltaic systems. J. Clean. Prod., 325, 129091.
- Campillo, C., Fortes, R., Prieto, M.D.H., Babatunde, E.B. (2012). Solar radiation effect on crop production. *Solar radiation*, *I*(494), 167-194.
- Çelik, H. (2018). The productivity of some southern highbush and rabbiteye blueberry cultivars under Turkey conditions. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 11-18.
- Chae, K. H., et al. (2013). Floating agrivoltaic systems for rice farming. Renewable and Sustainable Energy Reviews, 24, 265-272.

- Chae, S.H., Kim, H.J., Moon, H.W., Kim, Y.H., Ku, K.M. (2022). Agrivoltaic systems enhance farmers' profits through broccoli visual quality and electricity production without dramatic changes in yield, antioxidant capacity, and glucosinolates. *Agronomy*, 12, 1415. https://doi.org/10.3390/agronomy12061415
- Chalgynbayeva, A., Gabnai, Z., Lengyel, P., Pestisha, A., Bai, A. (2023). Worldwide research trends in agrivoltaic systems - A bibliometric review. *Energies*, 16(2), 611.
- Chatzipanagi, A., Taylor, N., Jaeger-Waldau, A. (2023). Overview of the potential and challenges for agriphotovoltaics in the European Union. Luxembourg: Publications Office of the European Union.
- Chiriacò, M. V., et al. (2022). Agrivoltaic systems: A sustainable synergy between agriculture and energy production. *Renewable Energy*, 190, 1256-1267.
- Cho, W., Park, Y., Na, M. H., Choi, D. W. (2019). Exploring environmental factors affecting strawberry yield using pattern recognition techniques. *Journal of Internet Computing and Services*, 20(1), 39-46.
- Claudia Hanisch, M.A. Communications. First Agrivoltaic System for Carbon-Neutral Orcharding Being Tested. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/pressreleases/2021/2121_ISE_e_PR_Agri_PV_Orcharding.pdf.
- Corwin, S., Johnson, T.L. (2019). The role of local governments in the development of China's solar photovoltaic industry. *Energy Policy*, 130, 283–293.
- Dragomir, D., Ofrim, D.V., Oltenacu, V. C., Oltenacu, N., Căliniță, C., Dogaru, M. (2024). Impact of semitransparent photovoltaic panels on the quality of 'Sibilla' strawberries in Southeastern Romania. Fruit Growing Research, Vol. XXXX, 72-77.
- Dane, S., Laugale V., Lepse L. and Šterne D. (2016). Possibility of strawberry cultivation in intercropping with legumes: a review. Acta Hortic., 1137, 83-86.
- Diamanti, J., Capocasa, F., Balducci, F., Battino, M., Hancock, J., and Mezzetti, B. (2012). Increasing strawberry fruit sensorial and nutritional quality using wild and cultivated germplasm. *PLoS ONE 7* (10).
- Dinesh, H., Pearce, J. M. (2016a). Agrivoltaics for water conservation in dry climates. *Energy for Sustainable Development*, 31, 19-26.
- Dinesh, H., Pearce, J. M. (2016 b). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299-308.
- Dobson, P., Graham, J., Stewart, D., Brennan, R., Hackett, C.A., and McDougall, G.J. (2012). Overseasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J. Agric. Food Chem., 60 (21), 5360–5366.
- Domínguez, C., Jost, N., Askins, S., Victoria, M., Antón, I. (2017). A review of the promises and challenges of micro-concentrator photovoltaics. *AIP Publ. LLC*, 1881, 080003.
- Dragišić Maksimovi, J., Urošević, S., Koron, D., Žnidaršič Pongrac, V., Milivojević, J., Radivojević, D. (2018). Field performance of 'Bluecrop' highbush blueberry in a soilless growing system by using

- different fertilizers. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 187-194.
- Dupraz, C., et al. (2011a). Large-scale agrivoltaic farm implementation. *Nature Communications*, 2, 262-267.
- Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y. (2011b). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. *Renewable Energy*, 36(10), 2725–2732.
- Dupraz, C., Vagliasindi, F., Montalbano, P. (2020). Agrivoltaics: Synergies and trade-offs between renewable energy and food production. Renewable and Sustainable Energy Reviews, 119, 109586.
- Elavarasan, R.M., Afridhis, S., Vijayaraghavan, R.R., Subramaniam, U., Nurunnabi, M. (2020). SWOT analysis: A framework for comprehensive evaluation of drivers and barriers for renewable energy development in significant countries. *Energy Rep.*, 6, 1838–1864.
- Ertekin, C., Comart, A., Ekinci, K. (2024). Energy Analysis for Global Berry Fruit Production. Sustainability, 16(6), 2520, 1-22.
- Erwin, J., Gesick, E. (2017). Photosynthetic responses of swiss chard, kale, and spinach cultivars to irradiance and carbon dioxide concentration. *HortScience*, 52, 706–712.
- Ezzaeri, K., Fatnassi, H., Bouharroud, R., Gourdo, L., Bazgaou, A., Wifaya, A., Demrati, H., Bekkaoui, A., Aharoune, A., Poncet, C., et al. (2018). The effect of photovoltaic panels on the microclimate and on the tomato production under photovoltaic canarian greenhouses. Sol. Energy, 173, 1126–1134.
- Fernández, E.F., Villar-Fernández, A., Montes-Romero, J., Ruiz-Torres, L., Rodrigo, P.M., Manzaneda, A.J., Almonacid, F. (2022). Global energy assessment of the potential of photovoltaics for greenhouse farming. *Appl. Energy*, 309, 118474.
- Fontanesi, Y., Rambla, J.L., Cabeza, A., Medina, J.J., Sanchez-Sevilla, J.F., Valpuesta, V., Botella, M.A., Granell, A., and Amaya, I. (2012). Genetic analysis of strawberry fruit aroma and identification of Omethyltransferase FaOMT as the locus controlling natural variation in mesifurane content. *Plant Physiol.* 159(2), 851–870.
- Gim,G.H., Park, J., Young Kim, T., Deok, S., Kim, W., Nam, J., Lim, C. Investigation of Pear Growth under Foldable Agrivoltaic Structure. Available online: https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/Investigation-of-Pear Growth-Under -Foldable-Agrivoltaic-Structure.pdf.
- Giri, N.C., Mohanty, R.C. (2022a). Agrivoltaic system: Experimental analysis for enhancing land productivity and revenue of farmers. *Energy Sustain.*, 70, 54–61.
- Giri, N.C., Mohanty, R.C. (2022b). Design of agrivoltaic system to optimize land use for clean energy-food production: A socio-economic and environmental assessment. Clean Technol Env. Policy, 24, 2595– 2606.
- Goetzberger, A., Zastrow, A. (1981). The concept of dual land use for solar energy and agriculture. *Renewable Energy*, 1(1), 53-57.

- Goetzberger, A.; Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. *Int. J. Sol. Energy*, 1, 55–69.
- Gorjian, S., Bousi, E., Özdemir, E., Trommsdorff, M., Kumar, N.M., Anand, A., Kant, K., Chopra, S.S. (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. *Renew.* Sustain. Energy Rev., 158, 112126.
- Hassanpour Adeh, E., Selker, J. S., Higgins, C. W. (2018). Remarkable agrivoltaic influence on soil moisture, micrometeorology, and water-use efficiency. PLOS ONE, 13(11), e0203256.
- Hassanpour, H., Shamsi, K., Mousavi, A. (2018a). Effect of agrivoltaic shading on elderberry (*Sambucus nigra*) production. *Agricultural Systems*, 162, 102-113.
- Hassanpour, H., Shirmohammad, M., Ghasemnezhad, M. (2018 b). Effects of different shading treatments on quality and antioxidant properties of highbush blueberry. *Scientia Horticulturae*, 234, 1-8.
- Heide, O.M., and Sønsteby, A. (2012). Floral initiation in black currant cultivars (*Ribes nigrum L.*): effects of plant size, photoperiod, temperature, and duration of short day exposure. *Sci. Hortic.*, 138, 64–72.
- Hermelink, M. I., Maestrini, B., de Ruijter, F. J. (2024).Berry shade tolerance for agrivoltaics systems: A meta-analysis. Scientia Horticulturae, 330, 113062.
- Hernandez, R. R., Hoffacker, M. K., Field, C. B. (2014). Efficient use of land to meet sustainable energy needs. *Nature Climate Change*, 4(5), 373–377.
- Hussain, A., Batra, A., Pachauri, R. (2017). An experimental study on effect of dust on power loss in solar photovoltaic module. *Renewables: Wind, Water, and Solar, 4*, 1-13.
- Ioannidis, R.; Koutsoyiannis, D. (2020). A review of land use, visibility and public perception of renewable energy in the context of landscape impact. *Appl. Energy*, 276, 115367.
- Jamil, T., Pearce, J. M. (2023). Enhancing berry production through agrivoltaics. *Journal of Agricultural Science and Technology*, 45(3), 325-341.
- Jiang, S., Tang, D., Zhao, L., Liang, C., Cui, N., Gong, D., Wang, Y., Feng, Y., Hu, X., Peng, Y. (2022).
 Effects of different photovoltaic shading levels on kiwifruit growth, yield, and water productivity under "agrivoltaic" system in Southwest China. Agricultural Water Management, 269, 107675.
- Jo, H., Asekova, S., Bayat, M.A., Ali, L., Song, J.T., Ha, Y.S., Hong, D.H., Lee, J.D. (2022). Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea. Agriculture, 12, 619.
- Juillion, P., Lopez, G., Fumey, D., Génard, M., Lesniak, V., Vercambre, G. (2020). Water Status, Irrigation Requirements and Fruit Growth of Apple Trees Grown under Photovoltaic Panels. Agrivoltaics 2020 Conference and Exhibition.
- Juillion, P. (2021). Impact of full sun tracking with photovoltaic panels on subsequent year bloom density and fruit drop in apple trees. Fraunhofer-

- Institut für Solare Energiesysteme ISE, AgriVoltaics 2021 -Connecting Agrivoltaics Worldwide, 14.
- Juillion, P., Lopez, G., Fumey, D., Lesniak, V., Génard, M., Vercambre, G. (2022). Shading Apple Trees with an Agrivoltaic System: Impact on Water Relations, Leaf Morphophysiological Characteristics and Yield Determinants. SSRN Electron. J., 306, 111434.
- Jung, D., Salmon, A. (2022). Price for covering cropland with an agrivoltaic system: PV panels replacing shading nets in Chilean blueberry cultivation. AIP Conference Proceedings, 2635(1), AIP Publishing.
- Jung, D., Schönberger, F., Moraga, F. (2023).
 Agrivoltaics Over Berries in Chile: Potential for Clean Energy Generation and Climate Change Adaption. AgriVoltaics Conference Proceedings, 2.
- Kandemir, A., Mısır, D., Demirsoy, L., Soysal, D., Demirsoy, H. (2018). Harvest season and some fruit quality characteristics of strawberry under protected and open field conditions. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 195-202.
- Kim, S., Kim, S., Yoon, C.Y. (2021). An Efficient Structure of an Agrophotovoltaic System in a Temperate Climate Region. Agronomy, 11, 1584.
- Kruger, E., Dietrich, H., Hey, M., and Patz, C.D. (2011). Effects of cultivar, yield, berry weight, temperature and ripening stage on bioactive compounds of black currants. J. Appl. Bot. Food Qual., 84, 40–46.
- Kumpanalaisatit, M., Setthapun, W., Sintuya, H., Pattiya, A., Jansri, S. N. (2022). Current status of agrivoltaic systems and their benefits to energy, food, environment, economy, and society. Sustainable Production and Consumption, 33, 952-963.
- Laugale, V., Lepsis, J., Dane, S., Strautina, S. (2018). Performance of seven blackcurrant cultivars under two soil maintenance systems. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 43-50.
- Lee, H.J., Park, H.H., Kim, Y.O., Kuk, Y.I. (2022). Crop Cultivation Underneath Agro Photovoltaic Systems and Its Effects on Crop Growth, Yield, and Photosynthetic Efficiency. Agronomy, 12, 1842.
- Lee, S., Lee, J. H., Jeong, Y., Kim, D., Seo, B. H., Seo, Y. J., ... & Choi, W. (2023). Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment. Applied Energy, 341, 121130.
- Leon, A.; Ishihara, K.N. (2018). Influence of allocation methods on the LC-CO2 emission of an agrivoltaic system. *Resour. Conserv. Recycl.*, 138, 110–117.
- Lepaja, K., Lepaja, L., Kullaj, E. (2018). Effect of water stress on blueberry cultivation in pots. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 51-54.
- Liu, W., et al. (2019). Implementation of shading strategies for vegetable crops. Agricultural Systems, 170, 145-152.
- Lorencena, C., Pérez, R., Almeida, D. (2019). The impact of agrivoltaic systems on gooseberry cultivation. Sustainable Agriculture Research, 8(2), 112-123. https://doi.org/10.1016/j.sar.2019.06.004.
- Lu, S. M., Amaducci, S., Gorjian, S., Haworth, M., Hägglund, C., Ma, T., ... & Campana, P. E. (2024). Wavelength-selective solar photovoltaic systems to

- enhance spectral sharing of sunlight in agrivoltaics. *Joule.* 8, 2483-2522,
- Macdonald, J.; Probst, L.; Cladera, J.R. (2022). Opportunities and challenges for scaling agrivoltaics in rural and Urban Africa. AIP Conf. Proc., 2635, 070002.
- Macknick, J., Beatty, B., Hill, G. (2013). Overview of opportunities for co-location of solar energy technologies and vegetation. *National Renewable Energy Lab.(NREL)*, *Golden, CO*, United States.
- Macknick, J., Hartmann, H., Barron-Gafford, G., Beatty, B., Burton, R., Seok-Choi, C., ... & Walston, L. (2022). The 5 Cs of agrivoltaic success factors in the United States: Lessons from the InSPIRE research study. National Renewable Energy Lab. (NREL), Golden, CO, United States.
- Magarelli, A., Mazzeo, A., Ferrara, G. (2024). Fruit Crop Species with Agrivoltaic Systems: A Critical Review. Agronomy, 14, 722.
- Maity, P., Sarr, M., Dupont, J. (2023a). Agrivoltaic technology for sustainable agriculture: A case study on berry crops. *Renewable Energy Reports*, 12, 85-102.
- Maity, R., Sharma, A., Raj, A. (2023b). Role of agrivoltaics in sustainable food and energy production. *Journal of Renewable and Sustainable Energy*, 15(2), 025101. https://doi.org/10.1063/5.0086822
- Majidi, M., Naserian, S., Rezaei, E. (2023). Improving blueberry production under agrivoltaic shading systems. Horticultural Science and Biotechnology, 98(1), 87-95.
- Majumdar, D., Pasqualetti, M. J. (2021). Dual-use of agricultural land: A review of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 148, 111290.
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. (2017).Agrivoltaic Potential on Grape Farms in India.Sustain. Energy Technol., 23, 104–110.
- Marrou, H., Dufour, L., Wery, J. (2013a). How does a shelter of solar panels influence water flows in a soil– crop system?. European Journal of Agronomy, 50, 38-51.
- Marrou, H., Wéry, J., Dufour, L., Dupraz, C. (2013b). Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. European Journal of Agronomy, 44, 54-66.
- Maruyama, H., et al. (2004). Experimental agrivoltaic systems for crop protection. Solar Energy Materials & Solar Cells, 84(1-4), 213-221.
- Massetani, F., Palmieri, J., Neri, D. (2014). Misshapen fruits in'Capri'strawberry are affected by temperature and fruit thinning. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, II (1117), 373-379.
- Mezzetti, B. (2016). The sustainable improvement of European berry production, quality and nutritional value in a changing environment: strawberries, currants, blackberries, blueberries and raspberries – the EUBerry project. Acta Hortic., 1117, 309-314.
- Mihălcioiu, I. M., Olteanu, A. L. G., Tabacu, A. F., Lorentz, E. D., Butcaru, A. C., Mihai, C. A., Stănică, F. (2024). Hortivoltaics-A road to go or not? A

- review. Scientific Papers. Series B. Horticulture, 68(2).788 794.
- Miloş G.C., Georgescu M.I., Petra S.A., Peticila G.A., Costache N., Toma F. (2022). Research On Modular Hortivoltaic Solutions. *Scientific Papers. Series B, Horticulture*, LXVI(1), 718-723.
- Moreda, G.P., Muñoz-García, M.A., Alonso-García, M.C., Hernández-Callejo, L. (2021). Techno-Economic Viability of Agro-Photovoltaic Irrigated Arable Lands in the EU-Med Region: A Case-Study in Southwestern Spain. Agronomy, 11, 593.
- Mouhib, T., Al-Shetwi, A. Q., Hossain, M. A. (2022a). Agrivoltaics: Challenges, current status, and future trends. Renewable and Sustainable Energy Reviews, 162, 112391.
- Mouhib, E., Micheli, L., Almonacid, F.M., Fernández, E.F. (2022b). Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics. *Energies*, 15, 8777.
- Naamandadin, N.A.; Ming, C.J.; Mustafa, W.A. (2018). Relationship between Solar Irradiance and Power Generated by Photovoltaic Panel: Case Study at UniCITI Alam Campus, Padang Besar, Malaysia. J. Adv. Res. Eng. Knowl., 5, 16–20.
- Obergfell, J., Schindele, S., Becker, G. (2021). Performance and microclimatic effects of agrivoltaic shading on gooseberry crops. Sustainability, 13(4), 2214.
- Okatan, V., Aşkın, M. A. (2017). The effects of different growing systems on the yield and quality of currant cultivation. Scientific Papers. Series B, Horticulture, LXI, 21-26.
- Palha, M. G., Pestana, F., Oliveira, C. M. (2018). Plant growth, yield and fruit quality of *Fragaria ananassa* genotypes under supplemental LED lighting system and substrate cultivation. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 91-98.
- Panfilova, O., Tsoy, M., Golyaeva, O., Knyazev, S., Karpukhin, M. (2021). Agrometeorological and Morpho-Physiological Studies of the Response of Red Currant to Abiotic Stresses. *Agronomy*, 11, 1522.
- Petrakis, T., Ioannou, P., Kitsiou, F., Kavga, A., Grammatikopoulos, G., Karamanos, N. (2024). Growth and Physiological Characteristics of Strawberry Plants Cultivated under Greenhouse-Integrated Semi-Transparent Photovoltaics. *Plants*, 13, 768.
- Pitsioudis, F., Odeurs, W., Meesters, P. (2008). Early and late production of raspberries, blackberries and red currants. Workshop on Berry Production in Changing Climate Conditions and Cultivation Systems. COST-Action 863: Euroberry Research: from 838, 33-38.
- Poyraz Engin, S., Mert, C. (2018). Determination of fruit growth in Nero'and'Viking'aronia cultivars. XXX Int. Hort. Congr.: III International Berry Fruit Symposium, 1265, 179-186.
- Prehoda, E.; Pearce, J.M.; Schelly, C. (2019). Policies to Overcome Barriers for Renewable Energy Distributed Generation: A Case Study of Utility Structure and Regulatory Regimes in Michigan. *Energies*, 12, 674.

- Randle-Boggis, R.J., Lara, E., Onyango, J., Temu, E.J., Hartley, S.E. (2021). Agrivoltaics in East Africa: Opportunities and challenges. AIP Conf. Proc., 2361, 090001.
- Reasoner, M., Ghosh, A. (2022). Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review. *Challenges*, 13, 43.
- Ritchie, H., Roser, M. (2019). Land use. Our world in data. Available online: https://ourworldindata.org/ land-use.
- Roxani, A., Zisos, A., Sakki, G. K., Efstratiadis, A. (2023). Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies. *Land*, 12(5), 1069.
- Ruiz-Canales, A., Padilla-Gasco, L., López-López, M. (2022). Red currant production in agrivoltaic environments. Agricultural Research, 10(4), 412-427.
- Sahu, A., Yadav, N., Sudhakar, K. (2016). Agrivoltaic system: A dual purpose smart agricultural approach for sustainable food and energy production. *Renewable and Sustainable Energy Reviews*, 54, 299-308. https://doi.org/10.1016/j.rser.2015.10.024
- Sahu, S. K., Patel, R., Tiwari, G. N. (2020). Agrivoltaics: A new paradigm for food and energy security. *Renewable Energy*, 148, 1-10.
- Santra, P., et al. (2017). Agrivoltaics: Prospects for renewable energy and sustainable agriculture. *Current Science*, 112(10), 1992-2001.
- Sargentis, G. F., Ioannidis, R., Chiotinis, M., Dimitriadis, P., Koutsoyiannis, D. (2021). Aesthetical issues with stochastic evaluation. *Data Analytics for Cultural Heritage: Current Trends and Concepts*, 173-193.
- Sarr, A., Soro, Y. M., Tossa, A. K., Diop, L. (2023a). Agrivoltaic, a Synergistic Co-Location of Agricultural and Energy Production in Perpetual Mutation: A Comprehensive Review. *Processes*, 11(3), 948.
- Sarr, A., et al. (2023b). Large-scale agrivoltaics for staple crops. Renewable and Sustainable Energy Reviews, 173, 112891.
- Sarr, M., Diallo, B., Ndiaye, P. (2023c). Enhancing berry growth in arid regions using agrivoltaic solutions. *Environ. Sci. Technol.*, 57(5), 678-689.
- Schindele, S., et al. (2020). Implementation of agrivoltaics: Techno-economic analysis. *Applied Energy*, 265, 114737.
- Scognamiglio, A. (2016). 'Photovoltaic landscapes': Design and assessment. A critical review for a new transdisciplinary design vision. Renew. Sustain. Energy Rev., 55, 629–661.
- Sekiyama, T., Nagashima, A. (2019a). Solar sharing for sustainable agriculture and energy. Sustainability, 11(2), 588.
- Sekiyama, T., Nagashima, A. (2019b). Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for strawberries in Japan. *Renewable Energy*, 140, 620-632.
- Sekiyama, T., Nagashima, A. (2019c). Solar Sharing for Both Food and Clean Energy Production:

- Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. *Environments*, 6, 65.
- Sekiyama, K., Nagashima, T. (2020). Agrivoltaic systems for berry production. *Renewable Energy*, 158, 1010-1017.
- Sinclair, T.R., Muchow, R.C. (1999). Radiation Use Efficiency. Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 65, 215–265.
- Sirnik, I., Sluijsmans, J., Oudes, D., Stremke, S. (2023). Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems. Renewable and Sustainable Energy Reviews, 178, 113250.
- Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A., Fayaz, H. (2011). A review on global solar energy policy. Renew. Sustain. Energy Rev., 15, 2149–2163.
- Stallknecht, E. J., Herrera, C. K., Yang, C., King, I., Sharkey, T. D., Lunt, R. R., Runkle, E. S. (2023). Designing plant–transparent agrivoltaics. *Scientific reports*, 13(1), 1903.
- Strapasson, A., Woods, J., Chum, H., Kalas, N., Shah, N., Rosillo-Calle, F. (2017). On the global limits of bioenergy and land use for climate change mitigation. *GCB Bioenergy*, 9, 1721–1735.
- Tajima, M., Iida, T. (2021). Evolution of agrivoltaic farms in Japan. *AIP Publ. LLC*, 2361, 030002.
- Takeda F, Soria J. (2011). Method for producing longcane blackberry plants. HortTechnology, 21, 563-568.
- Thompson, E. P., Bombelli, E. L., Shubham, S., Watson, H., Everard, A., D'Ardes, V., ... & Bombelli, P. (2020). Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland. *Advanced Energy Materials*, 10(35), 2001189.
- Toledo, C., Scognamiglio, A. (2021). Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). Sustainability, 13(12), 6871.
- Toledo, M., García, R., Morán, L. (2021). Soil quality improvements under agrivoltaic systems in fruit orchards. *Geoderma*, 400, 115-130.
- Touil, S.; Richa, A.; Fizir, M.; Bingwa, B. (2021). Shading effect of photovoltaic panels on horticulture crops production: A mini review. Rev. Environ. Sci. Biotechnol., 20, 281–296.
- Touil, S., Benmamar, S., Bouguerra, A. (2022). Agrivoltaic technology: Impacts on cranberry production and energy sustainability. *Energy Reports*, 8, 1123-1134.
- Trommsdorff, M., et al. (2021a). Combining photovoltaic power and food production: An overview of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 141, 110794.
- Trommsdorff, M., Kang, J., Schindele, S. (2021b). Agrivoltaic potential for improving berry crop quality and environmental sustainability. Frontiers in Sustainable Food Systems, 5, 456-472.
- Trommsdorff, M., Dhal, I. S., Özdemir, Ö. E., Ketzer, D., Weinberger, N., Rösch, C. (2022a). Chapter 5. Agrivoltaics: solar power generation and food

- production. In Solar energy advancements in agriculture and food production systems. *Academic Press.*, 159-210.
- Trommsdorff, M., Gruber, S., Keinath, T., Hopf, M., Hermann, C., Schönberger, F., Zikeli, S., Ehmann, A., Weselek, A., Bodmer, U., et al. (2022b). Agrivoltaics: Opportunities for Agriculture and the Energy Transition. Fraunhofer Institute for Solar Energy Systems ISE, 2nd ed., Freiburg, Germany.
- Udrea, L. M., Violeta Alexandra, I. O. N., Barbu, A., Frîncu, M., Petre, A. C., Bădulescu, L. A., Bujor, O. C. (2024). Sensorial evaluation of organic strawberries and raspberries: effects of companion plants. Scientific Papers. Series B, Horticulture, LXVIII(2), 212-218.
- Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P., Frisson, T., Ryckewaert, M., Christophe, A. (2017). Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. *Appl. Energy*, 206, 1495–1507.
- Victoria, M., Haegel, N., Peters, I.M., Sinton, R., Jäger-Waldau, A., del Cañizo, C., Breyer, C., Stocks, M., Blakers, A., Kaizuka, I.; et al. (2021). Solar photovoltaics is ready to power a sustainable future. *Joule*, 5, 1041–1056.
- Weselek, A., Bauerle, A., Hartung, J., Zikeli, S. (2019).
 Agrivoltaics: High tech meets agriculture.
 Sustainable Agriculture Reviews, 36, 303–334.
- Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P. (2021a). Agrivoltaic systems: Applications, challenges, and opportunities. *Renewable and Sustainable Energy Reviews*, 144, 110-125. https://doi.org/10.1016/j.rser.2021.111280
- Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P. (2021b). Agrivoltaic systems: Applications and potentials for organic farming. Renewable Agriculture and Food Systems, 36(1), 1-15
- Weselek, A., et al. (2021c). Agrivoltaics: Synergies and trade-offs between land, food, and energy. Renewable and Sustainable Energy Reviews, 148, 111299.
- Weselek, A., Bauerle, A., Hartung, J., Zikeli, S., Lewandowski, I., Högy, P. (2021d). Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev., 41, 59.
- Weselek, A., Bauerle, A., Zikeli, S., Lewandowski, I., Högy, P. (2021e). Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. var. Rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy, 11, 733.
- Weselek, A., et al. (2022). AI and sensor-integrated agrivoltaic systems. Solar Energy, 245, 92-103.
- Wielgat, R., Kołodziej, A., Candela, L., Lisowska-Lis, A., Jasielski, J., Chlastawa, Ł., Touhami, M, Jaramillo, M. F. (2024). A concept of smart agrophotovoltaic tunnels. *IEEE Access*, 12, 40765-40794.
- Williams, R., Brown, T., Li, X. (2023). Agrivoltaic farming: Future perspectives for sustainable agriculture. *Journal of Renewable Energy and Agriculture*, 29(2), 55-72.

- Willockx, B., Herteleer, B., Ronsijn, B., Uytterhaegen, B., Cappelle, J. (2020a). A standardized classification and performance indicators of agrivoltaic systems. EU PVSEC Proceedings, 1–4.
- Willockx, B., Herteleer, B., Cappelle, J. (2020b). Combining photovoltaic modules and food crops: first agrovoltaic prototype in Belgium. Renewable Energy & Power Quality Journal, 18.
- Willockx, B., Reher, T., Lavaert, C., Herteleer, B., Van de Poel, B., Cappelle, J. (2024). Design and evaluation of an agrivoltaic system for a pear orchard. Applied Energy, 353, 122166.
- Winardiantika, V., Lee, Y. H., Choi, I. Y., Yoon, C. S., Yeoung, Y. R. (2014). Effects of high temperature on pollen performance in ever-bearing strawberry cultivars. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, II (1117), 365-372.
- Yang, H. Y., Zhang, C. H., Wu, W. L., Lyu, L. F. (2018).
 Influence of drought stress on the leaf morphology

- and physiological characteristics in blackberry (*Rubus* L.) seedlings. *XXX Int. Hort. Congr.: III International Berry Fruit Symposium*, 1265, 27-34.
- Younas, R., Imran, H., Riaz, M. H., Butt, N. Z. (2019). Agrivoltaic farm design: Vertical bifacial vs. tilted monofacial photovoltaic panels. *Appl Phys*, 1-29. https://arxiv.org/abs/1910.01076v1
- Zahrawi, A.A., Aly, A.M. (2024). A Review of Agrivoltaic Systems: Addressing Challenges and Enhancing Sustainability. Sustainability, 16, 8271.
- Zainol Abidin, M.A., Mahyuddin, M.N., Mohd Zainuri, M.A.A. (2021). Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: AReview. Sustainability, 13, 7846.
- Zucchi, P., Martinatti, P., Pergher, A. (2014). Photoperiod extension effect on nursery tray-plants of everbearing strawberry. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, II (1117), 359-364.