

ASSESSMENT OF GENETIC DIVERSITY OF GRAPEVINE GENOTYPES USING SIMPLE SEQUENCE REPEATS (SSR) MARKERS AND SSR-BASED DNA BARCODE DESIGN

Monica HÂRȚA¹, Rodica POP¹, Liliana ROTARU², Lucia Cintia COLIBABA²,
Alin DOBREI³, Steliana Paula BARBU⁴, Doina CLAPA¹

¹University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca,
3-5 Calea Mănăștur Street, Cluj-Napoca, Romania

²“Ion Ionescu de la Brad” Iași University of Life Sciences, 3 Mihail Sadoveanu Alley,
Iași, Romania

³University of Life Sciences “King Mihai I” from Timișoara, 119 Calea Aradului,
Timișoara, Romania

⁴Valea Călugărească Research, Development Institute for Viticulture and Vinification,
2 Valea Mantei Street, Valea Călugărească, Romania

Corresponding author email: doina_clapa@usamvcluj.ro

Abstract

Romania has a valuable wine heritage, and the genetic evaluation of grapevine genotypes from *Vitis* germplasm collections is a national priority. Thus, this study aimed to characterize 22 Romanian grapevine genotypes and five international reference varieties using nine SSR (Simple Sequence Repeats) loci. *VVMD32* was the most informative ($He=0.837$; $PI=0.040$) SSR marker with 11 alleles generated. Conversely, the *VvZag62* locus generated the lowest number of alleles (6) with values recorded for $He=0.744$ and $PI=0.109$. The genetic SSR profiles were used to construct a barcode design to compare the number and size of alleles among the screened grapevine samples. The results of this study show that SSR genotyping supplemented with a useful data grouping mode is effective for genetic diversity analysis of *Vitis* germplasm resources.

Key words: *Vitis vinifera* L., OIV microsatellites, DNA polymorphism, genetic resources.

INTRODUCTION

Romania is a Southeastern European country with a long grapevine cultivation and winemaking tradition (Bodea et al., 2009). Over the centuries, the winemaking areas have been developed into favourable geographical areas for viticulture in Romania, depending on the relief, climatic conditions, and soil types (Soare et al., 2010; Bănuță et al., 2024).

Grapevine cultivation has existed since ancient time, and Romanian grape germplasm collections showcase various gene pools. These include autochthonous varieties, old local biotypes, and newly developed cultivars that have arisen from utilizing the genetic resources of both native and international varieties, interspecific hybrids, and wild grapevine populations of *Vitis vinifera* ssp. *sylvestris* (Popescu et al., 2018). Additionally, germplasm mixing occurred due to the import of different genotypes following the phylloxera epidemic

(Pușcă, 2010). Ampelographic characterization and SSR molecular marker analysis of grapevine genotypes have been performed across various national germplasm collections in several European countries (Agar et al., 2011; Buhner-Zaharieva et al., 2010; Dzhambazova et al., 2009; Grando & Frisinghelli, 1998; Lefort & Roubelakis-Angelakis, 2000; Lopes et al., 1999; Martin et al., 2003; Pellerone et al., 2001; Štajner et al., 2011). These studies aimed to compile the results in the national *Vitis* databases or to coordinate efforts among them through the European *Vitis* database (Maul et al., 2012). The molecular evaluation of grapevine genotypes maintained in Romanian germplasm collections using SSR markers is still a work in progress. Some previously published studies (Gheorghe et al., 2010; Motoc et al., 2010) suggest that SSR markers are efficient and reliable tools for accurately characterising Romanian grapevine varieties. They complete the classical methods of identification based on

ampelographic description (Popescu & Crespan, 2018).

Identifying SSR genetic profiles for old local varieties and newly developed cultivars can serve as a passport certifying their authenticity. This approach also represents a critical strategy for the future preservation of Romanian grapevine accessions with scientific and economic significance (Ghețea et al., 2012; Ilina-Dumitru et al., 2024).

The current study utilized nine nuclear SSR loci to characterize 22 Romanian grapevine varieties, with five international cultivars included as comparative genetic profiles. The microsatellite analysis was employed to create a barcode system, a visual representation of the data that simplifies the detection of genotypic differences.

MATERIALS AND METHODS

Total genomic DNA isolation and PCR amplifications were carried out according to the protocol presented by Hărța & Pamfil (2013).

Table 1 presents the *Vitis vinifera* genotypes used for SSR genetic analysis.

Table1. Plant material used for SSR analysis

Genotype name	Berry colour	Geographic origin	Distribution code*
Alb aromat	white	Timiș county	330
Alb crocant	white	Timiș county	330
Alb lax	white	Timiș county	330
Arămuș	white	Timiș county	330
Auriu	white	Timiș county	330
Coada oii	white	Timiș county	330
Conic auriu	white	Timiș county	330
Gras aripat	white	Timiș county	330
Ochiul boului	white	Timiș county	330
Pătrunjorăca	white	Timiș county	330
Răschirata	white	Timiș county	330
Cioinică	white	Iași county	320
Coama albă	white	Iași county	320
Creață de Banat	white	Iași county	320
Cruciulita	white	Iași county	320
Feteasca albă	white	Iași county	320
Feteasca regală	white	Iași county	320
Frâncușă	white	Iași county	320
Galbenă de Odobești	white	Iași county	320
Grasă de Cotnari	white	Iași county	320
Mustoasa de Măderat	white	Iași county	320
Zgăhiără de Huși	white	Iași county	320
Cabernet Sauvignon-RG**	white	Iași county	310
Muscat Ottonel-RG**	white	Iași county	310
Riesling italic-RG**	white	Iași county	310
Chardonnay blanc-RG**	white	Iași county	310
Gewuerztraminer-RG**	rose	Iași county	310

In Table 1, the distribution codes were assigned according to Popescu & Crespan (2017): *310 = local cultivar, spread all over, international cultivar; 320 = major local cultivar, of local importance, but widely grown and 330 = minor

local cultivar, of local importance, fairly grown; **RG denotes the reference genotypes.

Nine SSR loci were employed for SSR analysis: VVS2 (Thomas & Scott, 1993); MD5, MD7 (Bowers et al., 1996); MD25, MD27, MD28, MD32 (Bowers et al., 1999); VrZAG 62, VrZAG 79 (Sefc et al., 1999). These SSR markers are recognized as OIV (International Organization of Vine and Wine) descriptors (<https://www.oiv.int/public/medias/6886/oiv-viti-609-2019-en.pdf>). The features of the SSR primers used for analysing *Vitis vinifera* genotypes are displayed in Table 2.

Table2. Primer name and sequences used for SSR analysis

SSR primer name	Primer sequences (5'-3')	OIV code
VVS2 F	CAGCCCGTAATGTATCCATC	801
VVS2 R	AAATTCAAAATTCTAATTCACCTGG	801
VVMD5 F	CTAGAGCTACGCCAATCAA	802
VVMD5 R	TATACCAAAATCATATCCCTAA	802
VVMD7 F	AGAGTTGCGGAGAACAGGAT	803
VVMD7 R	CGAACCTTCACACGCTTGTAT	803
VVMD 27 F	GTACCAAGATCTGAATACATCCGTAAGT	804
VVMD 27 R	ACGGGTATAGAGCAACAGGTGT	804
VrZAG 62 F	GGTGAAATGGGCACCGAACACAGC	805
VrZAG 62 R	CCATGTCTCTCTCAGCTTCTCAGC	805
VrZAG 79 F	AGATTGTGAGGAGGGAAACAAACCG	806
VrZAG 79 R	TGCCCCATTTCACACTCCCTTC	806
VVMD 32 F	TATGATTTTTAGGGGGGTGAGG	807
VVMD 32 R	GGAAAGATGGGTGACTCGC	807
VVMD 25 F	TTCCGTTAACGAAAGAAAGAGG	808
VVMD 25 R	TTGGATTGAAATTATTGAGGGG	808
VVMD 28 F	AACAATTCAATGAAAGAGAGAGAGA	809
VVMD 28 R	TCATCAATTCTGATCTATTGCTG	809

The sizes of alleles/ locus were evaluated using the CEQ fragment analysis software. Genetic parameters, including allele frequencies, expected and observed heterozygosity, estimated null allele frequencies, and the probability of identity, were calculated using Identity 1.0 software (Wagner & Sefc, 1999). DNA barcodes were organized in Microsoft Excel according to the protocol described by Galbacs et al. (2009).

RESULTS AND DISCUSSIONS

Nine SSR primer pairs amplified 77 SSR alleles, with an average of 8.55 alleles per locus, comparable to results obtained in previous reports (Coste et al., 2010; Carimi et al., 2010). The highest number of alleles was for VVMD32 locus (11), while the lowest for VrZAG62 locus (6). To evaluate the efficiency of microsatellite markers, we examined observed (H_o) and expected heterozygosity (H_e) to assess the

genetic variability among the analysed grapevines. H_o varied from 0.744 for VvZag62 to 0.868 for VVMD28. VVMD28 was the most informative SSR marker ($H_e=0.868$; $PI=0.031$). Conversely, VvZag62 locus generated the lowest number of alleles (6) with recorded values for $H_e=0.744$ and $PI=0.109$. The mean of observed heterozygosity (H_o) was slightly higher (0.826) than the expected value (0.802), with significant differences observed locus by locus (Table 3).

Table 3. Genetic parameters highlighting the genetic variability among the 27 grapevine genotypes

Locus	Allele size range (bp)	No. of alleles	H_e^1	H_o^2	Estimated frequency of null alleles	PI^3
VVS2	133-153	8	0.778	0.629	+ 0.083	0.078
VVMD5	228-248	9	0.831	0.814	+ 0.008	0.048
VVMD7	235-257	8	0.773	0.740	+ 0.018	0.083
VVMD25	239-269	8	0.770	0.888	- 0.066	0.087
VVMD27	176-195	8	0.796	0.851	- 0.030	0.071
VVMD28	218-268	10	0.868	0.962	- 0.050	0.031
VVMD32	240-273	11	0.836	0.814	+ 0.011	0.040
VrZAG62	186-204	6	0.744	0.851	- 0.061	0.109
VrZAG79	237-259	9	0.831	0.888	- 0.031	0.044
Mean		8.55	0.802	0.826		

¹Heterozygosity expected (H_e);

²Heterozygosity observed (H_o);

³Probability of identity (PI).

The mean observed heterozygosity (82.6%) was higher than that reported for other grapevine germplasm collections, such as Greece, with 73.7% (Bibi et al., 2020), and Turkey with 73.1% (Yüksel et al., 2023). It was also comparable to the values obtained by Lacombe et al. (2013) and Popescu & Crespan (2018). The

alleles of the markers used in this study were evenly distributed among analysed genotypes, resulting in a low probability of identical genotypes (0.031-0.087). This was the case except for the VrZAG79 marker, which had a PI value of 0.109 as shown in Table 3. DNA microsatellite analysis was used to create a barcode design. This study's findings demonstrated that this data grouping system was effective in characterizing Romanian grapevine genotypes. The SSR barcode system visualizes data and facilitates the detection of genotypic differences. If an overlap occurs in the allele size representation (where two or more markers have the same allele sizes), the bar can be marked with an index indicating those differences (Galbacs et al., 2015; Chinnappareddy et al., 2012). In this study, the SSR results were converted into DNA barcodes by separating the allele sizes from each SSR locus and then sorting the allele size data from lowest to highest.

As shown in Figure 1, the allele size bars were created on a linear scale for all the analysed cultivars. This method of data grouping can be beneficial for further studies regarding the characterization of Romanian grapevine cultivars at the molecular level. Incorporating these DNA barcodes into a future Romanian-designed *Vitis* database could enhance the quality of genetic resource management in grapevines.

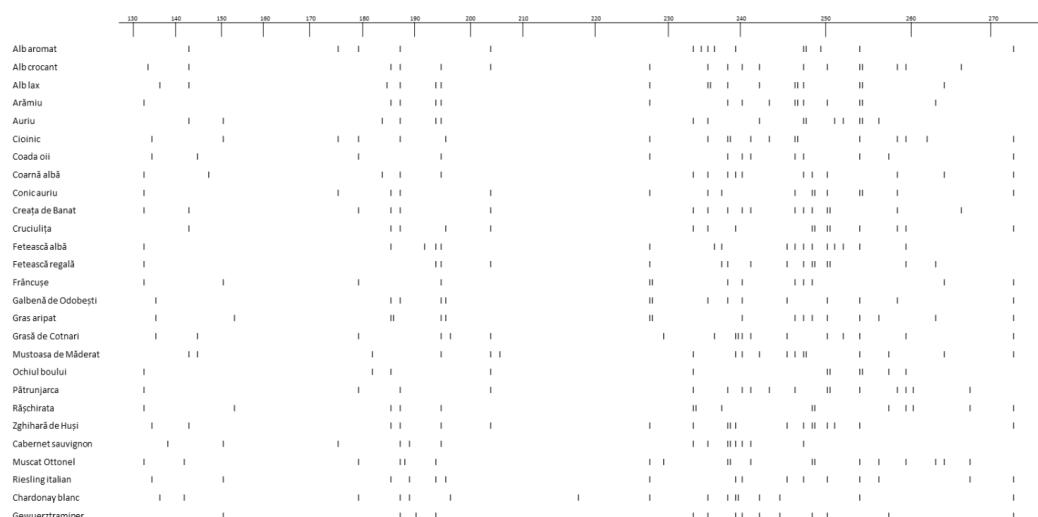


Figure1. SSR-based DNA barcodes of the studied grapevine genotypes

CONCLUSIONS

Although Romania has a valuable viticultural heritage, efforts to characterize grape varieties at the DNA level are still less emphasized compared to research results in other countries regarding molecular ampelography. In this study, the SSR genetic profiles of eleven *Vitis vinifera* genotypes (local biotypes) from Banat were identified for the first time, highlighting the genetic relationships with reference varieties and other Romanian varieties.

ACKNOWLEDGEMENTS

This research work was carried out with the support of Ministry of Agriculture and Rural Development and was financed from Project ADER 6.1.7./2023 titled 'The development of a national digital platform for genetic resources of vines in Romania, in order to conserve, manage and capitalize on the germplasm for future generations'.

REFERENCES

Agar, G., Yildirim, N., Ercisli, S., Ergul, A., & Yuksel, C. (2012). Determination of genetic diversity of *Vitis vinifera* cv. Kabarcik populations from the Coruh Valley using SSR markers. *Biochemical genetics*, 50, 476-483.

Bănuță, F. M., Stan, R., & Ciobotea, C. M. (2024). Performance evaluation of old vine varieties in the context of ecopedoclimatic challenges at INCDBH Ștefanesti, Argeș. *Annals of the University of Craiova, Biology, Horticulture, Food products processing technology, Environmental engineering*, 29(65).

Bibi, A. C., Gonias, E. D., & Doulis, A. G. (2020). Genetic diversity and structure analysis assessed by SSR markers in a large collection of *Vitis* cultivars from the island of Crete, Greece. *Biochemical genetics*, 58(2), 294-321.

Bodea, M., Pamfil, D., Pop, R., & Pop, I. F. (2009). Use of random amplified polymorphic DNA (RAPD) to study genetic diversity among Romanian local vine (*Vitis vinifera* L.) cultivars. *Bulletin UASVM Horticulture*, 66(1), 17-22.

Bowers, J. E., Dangl, G. S., Vignani, R., & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (*Vitis vinifera* L.). *Genome*, 39(4), 628-633.

Bowers, J. E., Dangl, G. S., & Meredith, C. P. (1999). Development and characterization of additional microsatellite DNA markers for grape. *American Journal of Enology and Viticulture*, 50(3), 243-246.

Buhner-Zaharieva, T., Moussaoui, S., Lorente, M., Andreu, J., Núñez, R., Ortiz, J.M. and Gogorcena, Y. (2010). Preservation and molecular characterization of ancient varieties in Spanish grapevine germplasm collections. *American Journal of Oenology and Viticulture*, 61(4): 557-562.

Carimi, F., Mercati, F., Abbate, L., Sunseri, F. (2010). Microsatellite analyses for evaluation of genetic diversity among Sicilian grapevine cultivars. *Genetic Resources and Crop Evolution* 57(5):703-719.

Coste, A., Postolache, D., Popescu, F., & Butiuc-Keul, A. L. (2010). Authentication of valuable grapevine varieties from Romania through molecular markers. *Romanian Biotechnological Letters*, 15(1), 3-11.

Chinnappareddy, L. R. D., Khandagale, K., Srinivas Reddy, S. H., Kanupriya, C., Chennareddy, A., & Singh, T. H. (2012). SSR-based DNA barcodes as a tool for identification of eggplant genotypes. *International journal of vegetable science*, 18(3), 260-271.

Dzhambazova, T., Tsvetkov, I., Atanassov, I., Rusanov, K., Martínez-Zapater, J. M., Atanassov, A., & Hvarleva, T. (2009). Genetic diversity in native Bulgarian grapevine germplasm (*Vitis vinifera* L.) based on nuclear and chloroplast microsatellite polymorphisms.

Galbacs, Z. (2009). Determination of microsatellite based fingerprints and pedigree analyses of grapevine varieties, PhD Thesis, 23 pag, Szent István University Plant Science

Galbacs, Z. S., Molnar, S., Halasz, G., Kozma, P., Hoffmann, S., Kovács, L., ... & Kiss, E. (2015). Identification of grapevine cultivars using microsatellite-based DNA barcodes. *VITIS-Journal of Grapevine Research*, 48(1), 17.

Gheorghe, R.N., C.F. Popescu, D. Pamfil, A.E. Pauchnecht (2008). Genetic diversity evaluation of some autochthonous grapevine varieties by RAPD markers. *Lucr. St. Seria Horticultura, Anul LI*. 51:73-76.

Ghețea, L.G., R.M. Motoc, C.F. Popescu, N. Bărbăcar, L.E. Bărbării, C.M. Constantinescu, D. Iancu, T. Bătrânu, I. Bivol, I. Baca and G. Savin (2012). Assessment of diversity in grapevine gene pools from Romania and Republic of Moldova, based on SSR markers analysis, Horticulture, Prof. Alejandro Isabel Luna Maldonado (Ed.), ISBN: 978-953-51-0252-6. InTech.

Grando, M. S., & Frisinghelli, C. (1998). Grape microsatellite markers: Sizing of DNA alleles and genotype analysis of some grapevine cultivars. *Vitis*, 37(2), 79-82.

Hărța, M., & Pamfil, D. (2013). Molecular characterisation of Romanian grapevine cultivars using nuclear microsatellite markers.

Ilina Dumitru, A. M., Crespan, M., Minto, A., Popescu, C. F., Manolescu, A. E., Sumedrea, D. I., & Cosmulescu, S. N. (2024). Identification and characterization of new *Vitis vinifera* L. accessions from Romanian germplasm. *Vitis*, 63.

Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Peros JP, This P (2013). Large-scale parentage analysis in an extended set of grapevine cultivars (*Vitis vinifera* L.). *Theoretical Applied Genetics* 126 (2):401-414.

Lefort, F., & Roubelakis-Angelakis, K. A. (2000). The Greek *Vitis* Database: A multimedia web-backed genetic database for germplasm management of *Vitis* resources in Greece. *Journal of Wine research*, 11(3), 233-242.

Lopes, M.; Sefc, K.; Eiras-Dias, J.; Steinkellner, H.; da Câmara Machado, M.; da Câmara Machado, A. (1999): The use of microsatellites for germplasm management in a Portuguese grapevine collection. *Theor. Appl. Genet.* 99, 733-739.

Maul, E., Sudharma, K. N., Kecke, S., Marx, G., Müller, C., Audeguin, L., ... & This, P. (2012). The European *Vitis* Database (www.eu-vitis.de): A technical innovation through an online uploading and interactive modification system. *Vitis*, 51(2), 79-85.

Martin, J. P.; Borrego, J.; Cabello, F.; Ortiz, J. M. 2003: Characterization of Spanish grapevine cultivar diversity using sequence-tagged microsatellite markers. *Genome* 46, 10-18.

Motoc, R. M., Ghețea, L. G., Popescu, C. F., Barbacar, N., Savin, G., Iancu, D., ... & Bărbării, L. E. (2010). Genetic variability revealed by sequencing analysis at two microsatellite loci, in some grapevine cultivars from Romania and Republic of Moldavia. *Biotech. Lett.* 15(2), 122-125.

Pellerone, F. I., Edwards, K. J., & Thomas, M. R. (2001). Grapevine microsatellite repeats: isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. *VITIS-GEILWEILERHOF*, 40(4), 179-186.

Popescu, C. F., & Crespan, M. (2018). Combining microsatellite markers and ampelography for better management of romanian grapevine germplasm collections. *Notulae Scientia Biologicae*, 10(2), 193-198.

Popescu, C. F., Bădulescu, A., Ștefănescu, D., & Călin, G. (2018). The management of ex situ grapevine germplasm collections. *Current Trends in Natural Sciences*, 7(13), 252-260.

Pușcă, I.M. (2010). *Vechi Soiuri Romanesti de Vita de Vie*, 2nd edition, București, ISBN 978-973-8334-20-5 Tipografia Intact Ed., 246 pp.

Soare, I., Man, O., Costache, S., & Nedelcu, A. (2010). Viticultural potential and wine tourism in Romania. *Journal of tourism*, Suceava, (10), 68-74.

Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in *Vitis riparia* and their applicability for genotyping of different *Vitis* species. *Genome*, 42(3), 367-373.

Štajner, N., Rusjan, D., Korošec-Koruza, Z., & Javornik, B. (2011). Genetic characterization of old Slovenian grapevine varieties of *Vitis vinifera* L. by microsatellite genotyping. *American Journal of Enology and Viticulture*, 62(2), 250-255.

Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSS). *Theoretical and Applied Genetics*, 86, 985-990.

Yüksel Özmen, C., Baydu, F., Hazrati, N., Uysal, T., Yaşasın, A. S., Özer, C., ... & Ergül, A. (2023). Genetic diversity and population structure analysis of grapevine germplasm of the Aegean region (Türkiye) by SSR markers. *Turkish Journal of Agriculture and Forestry*, 47(6), 1099-1114.

Wagner, H. W.; Sefc, K. M.; 1999: Identity 1.0. Center for Applied Genetics, University of Agricultural Sciences Vienna

***<https://www.oiv.int/public/medias/6886/oiv-viti-609-2019-en.pdf>