

ENVIRONMENTAL FACTORS AFFECTING THE CONDITION OF *PLATANUS x ACERIFOLIA* (AITON) WILLD. URBAN STREET TREES IN SOFIA

Svetlana ANISIMOVA¹, Elena TSVETKOVA¹, Gergana ZAEMDZHIKOVA²

¹University of Forestry, 10 St. Kliment Ohridski Blvd, 1797, Sofia, Bulgaria

²Forest Research Institute-BAS, 132 St. Kliment Ohridski Blvd, 1756, Sofia, Bulgaria

Corresponding author email: sanisimova@ltu.bg

Abstract

Street trees are the most vulnerable element of the urban green infrastructure and are subjected to many stressors. In recent years, there has been a noticeable increase in *Platanus x acerifolia* (Aiton) Willd. presence in the streetscapes of Sofia. The aim of this research is to identify important environmental abiotic and anthropogenic factors as well as biotic ones affecting its condition. The following influencing factors of tree performance in highly urbanized streetscapes were analyzed: meteorological indicators, air pollution, streetscape morphology, maintenance practices; and pests and diseases. Data for 1,824 street trees were collected by a field survey in alignments of the primary and secondary street network, distributed in commercial zones and residential areas, in the whole variety of possible orientations of streets. The analysis indicated the dominant presence (86.68%) of young trees (DBH < 25 cm), while 4.22% were over 50 cm in diameter. According to our research, the key factors that contributed to the poor performance, structural damage, and health decline of London plane street trees were drought and poor arboricultural practices. A considerable proportion of mature specimens (74.09%) had unclosed pruning wounds with diameter over 25 cm. Late removal of large branches of mature trees for crown lifting, reduction, or removal of structural defects led to decayed pruning wounds (53.64%) and development of water sprouts (20%), respectively. The lower trunk cavities in 13.18%, leaning trunk in 8.18%, branch dieback in 52.27% and unbalanced crowns in 11.36% of investigated mature specimens make them potentially hazardous. Some of young specimens displayed different human-caused damage (7.27%). Regarding the biotic factors, the degree of damage caused by pests and diseases was low – an average of 15%. The results revealed a statistically significant difference in DBH between two groups of young trees – one in median grass strips with a irrigation system and the other without. The analysis of heavy metals in the leaves as an indicator for pollution showed a significant correlation between the accumulation of Al and Pb, Ni and Cr ($r=0.91\div0.96$) and between Pb and Cr ($r=0.98$). The results provide guidance for the management of *Platanus x acerifolia* street trees in the urban green infrastructure in order to enhance their environmental benefits.

Key words: London plane; green infrastructure; stressors.

INTRODUCTION

Platanus x acerifolia (Aiton) Willd. is among the most commonly planted species in urban areas, favoured for its hardiness and ability to thrive in adverse urban conditions (Caneva et al., 2020; Sanusi & Livesley, 2020; Galle et al., 2021; Roman & Eisenman, 2022; Wang et al., 2023). London plane trees demonstrate high environmental stress tolerance in streetscapes in terms of resilience to water stress and toxic ambient urban pollutants (Tiwary et al., 2016; Haase & Hellwig, 2022). The species is valued and widely used as a street tree in urban environments due to its numerous ecological benefits. *Platanus* trees provide significant ecosystem services, including air purification, stormwater runoff reduction, urban heat island

mitigation, microclimate regulation, and thermal comfort improvement, contributing to the enhancement of biodiversity by providing habitat for urban wildlife (Wang et al., 2018; Wood & Esaian, 2020; Duval et al., 2022; Shen et al., 2023).

The economic, aesthetic, and social benefits of London plane street trees are substantial, with significant contributions to energy savings, increased property values, enhanced aesthetic appeal of urban areas, and improved quality of life (Rotherham, 2010; Wang et al., 2018; Xiong et al., 2019).

Platanus x acerifolia plays a significant role in the urban green spaces of the city of Sofia. It is one of the most prevalent species in the whole city street network, especially among the plantings in the last decades (Anisimova, 2023).

However, the health of plane trees is compromised by climate change effects (Dobrescu & Fabian, 2017; Sanusi & Livesley, 2020), pests and diseases (Pelleteret et al., 2017), which severely impact their vitality and reduce their ecosystem service benefits when they are most needed. Urban environments pose several challenges for *Platanus* trees, including soil compaction, pollution, and limited water availability. These factors can lead to health issues and reduced longevity (Gillner et al., 2015; Ordóñez et al., 2018).

The aim of this research is to identify the most important environmental abiotic, biotic, and anthropogenic factors affecting the overall performance of London plane urban street trees in the city of Sofia.

MATERIALS AND METHODS

The field-based survey was carried out during the period from 2021 to 2024, which included street alignments of all classes of the primary and secondary street network of the city of Sofia – II (Urban highways with intermittent traffic regime); III (Regional arterial streets); IV (Main streets), V (Collectors).

Overall performance of trees

The attributes that have been examined, collected and evaluated by field studies to characterize the overall performance of trees were: diameter at breast height (DBH); stem injuries and problems, crown damage and defects, and leaf damage by pests and diseases. Along with the tree phytosanitary status assessment, the poor maintenance practices and conflicts with the city's infrastructure (width of the sidewalk, distance of the stem from the street curb and the buildings) were considered.

The condition of the foliage of each specimen was visually assessed according to the degree of defoliation and degree of foliage transparency (Eichhorn et al., 2020) on a scale from 0 to 100%, with a step of 5%.

The following obvious tree defects were examined: leaning trunk, wounds and cracks on the bark and stem, wood decay in the lower trunks and cavities, fruiting bodies of a

basidiomycete (basidiocarp), and bacterial bleeding canker. Crown states were analyzed for an unbalanced crown, wood decay in unsealed pruning cuts, broken branches, dieback of twigs or branches, and epicormics (water) sprouts.

Meteorological and air pollution data

The abiotic factors that have been analyzed were temperature, relative humidity, and air pollution. Data on hourly values of meteorological variables: air temperatures (°C), relative humidity (%), and average hourly concentrations of PM₁₀, PM_{2,5} and O₃ for the period 2015-2024 from 5 Automatic Measuring Stations of the Executive Environmental Agency (EEA) were used.

Samples for leaf analysis were taken from 15 trees from 5 streets from II and III class. The sampling was carried out in August.

Statistical analysis

Descriptive statistics and single regression analysis were performed. Correlation coefficients (R) at selected significance thresholds of 95% and 99% probability were determined. For significant relationships, linear models of the type: $y=b.x+a$ were inferred. Excel was used for mathematical-statistical and graphical data processing.

RESULTS AND DISCUSSIONS

Street tree data for 1,824 tree specimens of *Pl. x acerifolia* were collected by a field survey in street alignments of all classes of the primary and secondary street network of the city of Sofia – II (17.84%), III (62.79%), IV (6.75%), V (12.62%).

The street plantings were located in different administrative territorial units of Sofia Municipality. The dendrometric indicator DBH of the surveyed street trees serves as an approximate assessment of the age of the specimens and was classified into categories (Figure 1). The analysis of DBH indicated the dominant presence (86.68%) of young trees (DBH < 25 cm), while 4.22% were over 50 cm in diameter. Most of the young trees were planted in the last two decades.

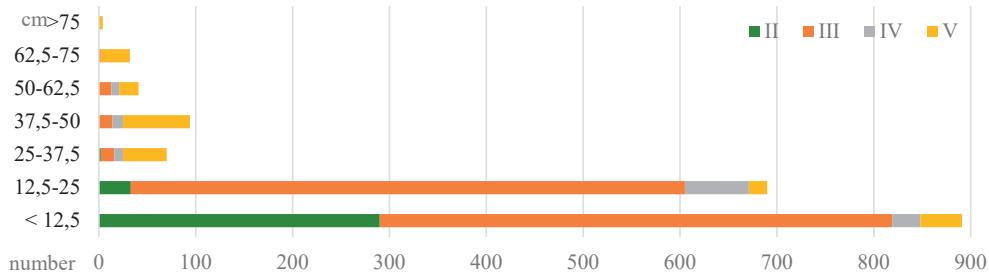


Figure 1. DBH class structure of *Platanus x acerifolia* trees for the main street classes

The age of the studied specimens ranged between 10 and 100 years.

The following influencing factors of tree performance in highly urbanized streetscapes were determined: abiotic, incl. soil conditions, meteorological indicators, air pollution, streetscape morphology, and maintenance practices; and biotic, including pests and diseases.

Abiotic and anthropogenic factors

Streetscape morphology and growing medium

The tree alignments were distributed along 20 streets and 10 boulevards in commercial zones and residential areas (Figure 2).

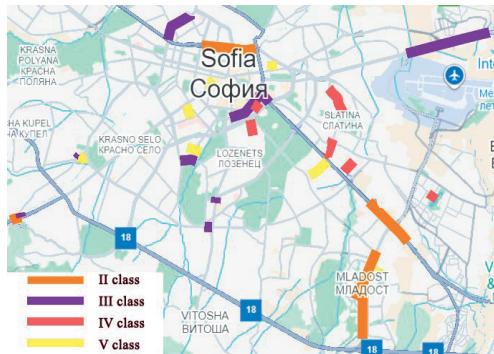


Figure 2. Surveyed streets in Sofia

The trees were located in the whole variety of possible orientations of streets – E-W (44.04%), N-S (22.32%), NW-SE (13.13%), NE-SW (20.51%) – and physical characteristics of the built environment. The width of the sidewalks varied between 2 and 8 m. 57.84% of the specimens were planted in median strips or grass verges (green strips between the road and sidewalk), while the rest were planted in single tree pits in concrete paving on streets with

different building densities. There were limitations to this study related to the inability to analyze soil and light factors in dense urban environments. In relation to the insolation regime, some of the specimens on the same sidewalk of the streetscape were flanked by multi-story buildings creating a canyon effect, while others were exposed to total irradiation.

Soil conditions and the tree-planting sidewalk cut-out area also varied across different sites. The trees were planted directly in the ground without any soil improvements to the growing medium – no amendments or application of structural soil. The application of de-icing salts on roads and pavements in winter is also part of municipality maintenance practices. However, these attributes vary from year to year, seasonally, and depend on the street zone. About 1/4 of the trees in the median strips were provided with irrigation systems.

Data analysis of a case study involving two groups of 15-17-year-old fully irradiated London plane trees grown along the same boulevard in Sofia – one group in median strips/grass verges with a surface irrigation system and the other without – revealed a statistically significant difference in DBH between the two groups ($p = 2.73E-11$) and crown volume, respectively. A greater range of DBH was observed in the non-irrigated area (Figure 3): more than 1/2 of the examined specimens had a DBH between 8 and 10 cm, while only 1/4 of the trees reached a diameter of 15-16 cm. On the other hand, 3/4 of the trees under irrigated conditions exceeded these dimensions. Some individual specimens in the non-irrigated grass strips reached sizes around and slightly above 22 cm. It was found that these trees were adjacent to a drainage channel. The average diameter of the trees under irrigated

conditions was about 5 cm larger. The mortality rate among non-irrigated specimens ranged between 10-15%. Optimized irrigation management, particularly with respect to tree phenology, could contribute to maximizing plane tree performance and survival in urban areas under climate change (David et al., 2018; Claude et al., 2024).

Plane trees planted in constrained environments, such as small tree pits or areas with concrete paving, tend to exhibit poorer health (Tan et al., 2022). Site factors variably affected stem caliper of plane street trees, which increased with a greater sidewalk cut-out area (Sherman et al., 2016). Soil conditions that influence tree performance in highly urbanized streetscapes frequently include: lack of soil volume available for adequate root growth; low soil nutrient and organic matter content; soil compaction, which hinders root development and water availability; elevated soil salinity, which causes osmotic stress to trees and frequently manifests as leaf chlorosis; high soil alkalinity, which can influence nutrient availability; and either poor drainage or low soil water-holding capacity.

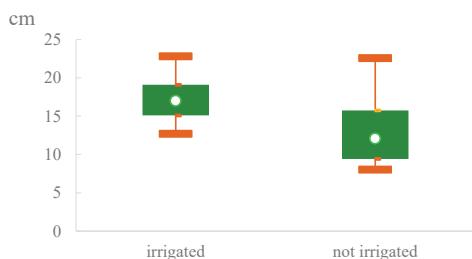


Figure 3. Box-plot diagrams of DBH of irrigated vs non-irrigated specimens

High soil salinity and alkalinity, along with physical damage and excessive sunlight exposure, have been linked to the decline of *Platanus* trees in urban settings (Ordóñez et al., 2018).

The importance of edaphic and irradiation factors has been recognized and deserves future investigation.

In a study of “hot spots” in terms of physiological stress and traffic pollution in Bucharest, *Pl. x acerifolia* was found to be one of the species less affected by adverse microclimate and edaphic urban conditions. The results indicated that younger specimens

suffered more under heavy traffic conditions (Dumitrașcu et al., 2010). Dendrochronological analyses revealed that the species was found to be less affected by a high degree of urbanization and exhibited higher drought tolerance, making it suitable for urban planting in temperate climates (Franceschi et al., 2023).

Human-induced damage

Pruning represents one of the most important maintenance practices for street trees. Its main objectives are improving safety, tree stability and health status, ensuring traffic clearance, and resolving conflicts with infrastructure. Some of young specimens displayed different human-caused damage, such as physical injuries to the crown, stem or root collar from vehicles or pedestrians, improper staking and arboricultural practices, and injury to the root collar area by grass trimmers (7.27%) (Figures 4 and 5).

The results show that a considerable proportion of mature London plane specimens (74.09%) had unclosed pruning wounds with diameter over 25 cm as a consequence of some improper pruning methods and techniques. Late removal of large branches of mature trees for crown lifting, reduction, or removal of structural defects led to decayed pruning wounds (53.64%) and development of water sprouts (20%), respectively (Figures 4 and 5). The process of callus and woundwood production (compartmentalization) is long and sometimes unsuccessful. Additionally, the lower trunk cavities in 13.18%, leaning trunk in 8.18%, branch dieback in 52.27% and unbalanced crowns in 11.36% of investigated mature specimens make them potentially hazardous.

The implementation of good formative pruning of recently planted *Pl. x acerifolia* street trees was found to be cost-effective, with lower costs compared to structural pruning of mature trees. Improper pruning often leads to structural defects and health issues which can compromise the structural integrity of trees, making them more susceptible to failure. Pruning should be consistent with the biology of the species and good arboricultural practices. *Pl. x acerifolia* street trees, with their rapid growth, require a lot of pruning work to establish strong structural framework and maintain it to maturity (Ryder & Moore, 2013).

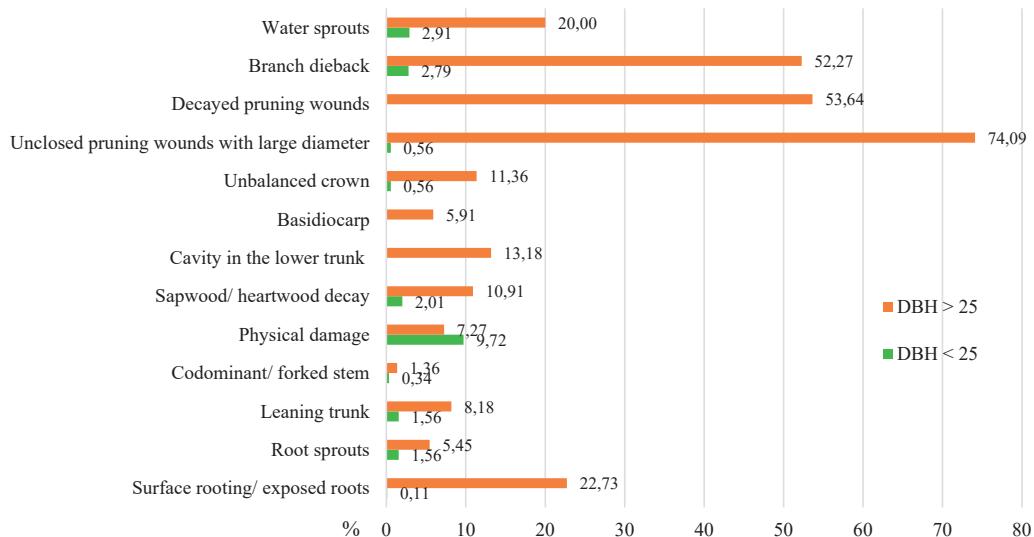


Figure 4. Percentage *Platanus x acerifolia* trees with structural defects, damage, and health issues

Figure 5. Human-induced damage of *Platanus x acerifolia* trees

Regular, moderate pruning of the London plane is recommended to maintain tree health and structure. This approach helps optimize the tree's ecosystem services, such as increased crown carbon sequestration and air quality improvement (PM₁₀ capture). Pruning represents an opportunity to increase the crown carbon stock by up to 65%, taking into account the full reestablishment of the crown. Over-pruning can lead to increased susceptibility to diseases, branch dieback occurrence, and reduced capacity to provide ecosystem services (Muscas et al., 2024). Disease spread in *Platanus* street trees can be prevented through appropriate management and planting practices. Proper pruning, larger pits with less concrete paving, and the presence of tree grates or guards can impact the health condition of trees (Tan &

Shibata, 2022). The results of this study are consistent with recent findings about the adverse effects of improper pruning practices on the health status and aesthetic value of horse chestnut street trees in Sofia (Pencheva & Anisimova, 2016).

Meteorological indicators

In the present study, the analysis of daily maximum temperature data for Sofia over a 10-year period (2015-2024) showed extremes of up to 48.1°C. These heat waves were recorded mainly from the last ten days of July to the second ten days of August. During these periods of elevated summer temperatures, leaf colour modification and early leaf drop of the plane trees were observed, especially in the areas with no irrigation. Extreme heat, such as heatwaves,

can lead to canopy leaf loss in *Platanus x acerifolia*, reducing ecosystem service benefits, such as shade cooling and human well-being in urban areas. A study in Melbourne observed 30-50% canopy loss in London plane trees following a heat wave with temperatures above 43°C (Sanusi & Livesley, 2020).

During the winter period, daily minimum temperatures in the range of -10 to -20°C were found. These low temperatures, combined with inversions that trap air pollutants in the ground layers, adversely affect the health of plane trees. Fluctuations in temperature conditions in urban environments were common during the study period. Temperature amplitudes in excess of 20°C per day were observed. This was especially true for the end of February, the second half of March and April, as well as during the first ten days of August.

The minimum value of relative humidity in the annual cycle was observed from June to September. During the same period, the onset of the dry period was expected. There were quite a few cases of relative humidity below 50%, and in certain periods, this value dropped below 30%, i.e. an indicator for atmospheric drought. In general, drought conditions exacerbate the vulnerability, especially of young plane trees, because, along with earlier foliage loss, they suffer from leaf chlorosis during drought periods and heat waves (Akhbarfar et al., 2023). Drought stress leads to a decline in chlorophyll content, net assimilation rate, and relative water content, which are particularly critical for the health and growth of young trees. Severe drought has been found to induce defoliation in London plane trees when extractable soil water content decreases below 25% (Claude et al., 2024). During periods of heat waves and drought, the maintenance of green alignments in Sofia rarely includes watering. The UHI effect, prolonged heat waves in combination with drought, lead to heat stress on street trees. Plane trees respond to water deficit with a time lag, resulting in lower growth in the years following the drought (Hirsch et al., 2023). The consequences of these urban conditions include failure to establish, retarded growth rates, tree decline and mortality.

The health status of the urban population of *Pl. x acerifolia* has been negatively and most

significantly influenced by long-term precipitation amount, higher precipitation amount in May, and a higher number of freezing days in winter. During the period of the highest damage, the specimens were additionally affected by the fungal pathogen *Apiognomonia veneta* (Sacc. et Spogg.) Höhn (Gregorová et al., 2010). Its spread is heavily influenced by high humidity and precipitation (Ivanová et al., 2010).

Air pollution

In Bulgaria, particulate matter (PM₁₀ and PM_{2,5}) has been identified as a major pollutant adversely affecting the near-surface atmosphere and air quality. The monitoring of air pollution in Sofia for the last decade during the vegetation period reported peak hourly concentrations per day of PM₁₀ that exceed 100 µg/m³. PM pollution is most often due to dust deposited on the streets as well as to deteriorated green areas in the capital, traffic and construction. Domestic heating with solid fuels during the winter months is also a source of dust pollution. Mineral dust transport from long distances, mostly originating from the Sahara Desert, is also a significant contributor. More than 104 days of the vegetation period have been reported with atmospheric circulations carrying Sahara Desert dust (AHB, 2022, 2023). From March to the first half of April, PM₁₀ values exceeded 250 µg/m³. Towards the end of June, levels in the range of 450-550 µg/m³ were recorded in 2016 (543 µg/m³) and 2019 (464 µg/m³), respectively. In the second half of August, pollution was also detected reaching maximum hourly levels of 513 µg/m³. The dynamics of maximum hourly mean concentrations of PM_{2,5} largely duplicate the PM₁₀ load at the beginning of the plane vegetation period in March. At the beginning of the study period, peak values in March reached 134 µg/m³, and in June – 96 µg/m³.

These fine particles deposited on the leaf blade negatively affect physiological and metabolic processes of plane trees. High concentrations have also been recorded at the end of the vegetation period and in fall. Values for the autumn season reach levels of up to 87 µg/m³. Street trees have been found to improve thermal comfort by lowering air temperatures and reducing PM levels, thereby improving outdoor urban environmental conditions (Miao et al.,

2023). However, the presence of street trees can also prevent the dispersion of air pollutants in street canyons, leading to the accumulation of street pollutants (Wang et al., 2024).

One of the main sources of heavy metal emissions in Sofia during the vegetation season is traffic. According to the latest data, more than half of the PM pollution is due to vehicles in the capital. Airborne PM in Sofia is loaded with polymetallic substances. Plane leaves coated with tiny, fine, stiff hairs retain significant amounts of fine PM, and this is also true for heavy metals. This is how they contribute significantly to improving air quality. The study found that 33% more dust was accumulated on

the leaves of street trees in comparison to those of park specimens: 1.05 mg/cm^2 in heavy traffic vs. 0.79 mg/cm^2 in a park area, respectively.

Information on air pollution in hotspots of the city can be easily extracted from the concentration of heavy metals in the assimilation organs of trees. The analysis of the results showed a significant positive linear correlation between the accumulation of Al in leaves, on the one hand, and that of Pb, Ni and Cr on the other. Moreover, a strong positive linear correlation was found between the accumulation of Pb and Cr in the leaves of street plane trees (Table 1).

Table 1. Correlation coefficients and coefficients of determination and linear equations of significant relationships between heavy metal content in *Platanus acerifolia* leaves

	Al	Zn	Cu	Ni	Pb	Cd	Cr	
Mn	0,75	-0,03	-0,29	0,74	0,80	0,74	0,77	$R^2 = 0,8802$ Ni = 0,0196.Al - 0,642 Al = 44,796.Ni - 39,604
Al		-0,50	-0,39	0,94*	0,96**	0,43	0,91*	$R^2 = 0,9177$ Pb = 0,0069.Al - 0,2742 Al = 132,9.Pb + 43,888
Zn			0,21	-0,37	-0,29	-0,01	-0,26	$R^2 = 0,8191$ Cr = 0,0187.Al - 0,5573 Al = 43,772.Cr + 40,768
Cu				-0,66	-0,21	-0,74	-0,02	$R^2 = 0,9617$ Cr = 2,813.Pb + 0,1496 Pb = 0,3419.Cr - 0,0377
Ni					0,87	0,61	0,76	
Pb						0,34	0,98**	
Cd							0,22	

Legend: * $p < 0,05$; ** $p < 0,01$

Tropospheric ozone can cause some damage to tree leaves and reduce biomass production, influencing tree decline, respectively (Xu et al., 2015). The calculated values of AOT40 for the study period, averaged over a 5-year period, exceeded the long-term target standard of 6,000 $\mu\text{g/m}^3 \cdot \text{h}$ by 1.08 to 1.33. Between 2017-2021, 6 ozone days were recorded with mean hourly pollutants above $180 \mu\text{g/m}^3 \cdot \text{h}$.

Biotic Stress Factors. Damage caused to *Platanus acerifolia* by biotic factors

Platanus acerifolia is susceptible to various pests and diseases, which – along with factors, such as pollution and climate change – contribute to the likelihood of death and failure of plane trees (Pelleteret et al., 2017).

Three insect species and two fungal pathogens causing damage to the crown of plane street trees were established, respectively: *Corythucha ciliata* (Say, 1832) (Hemiptera: Tingidae), *Phyllonorycter platani* (Staudinger, 1870) (Lepidoptera: Gracillariidae), *Metcalfa pruinosa* (Say, 1830) (Hemiptera: Flatidae),

Apiognomonia veneta (Sacc. et Speg.) Höhn. and *Erysiphe platani* (Howe) Braun & Takam. The species composition of pests and fungi, as well as the degree of damage caused by them, are given in Table 2. The degree of damage caused by pests and diseases in the study area and period was low – an average of 15%. Regarding the biotic factor, it can be concluded that the health status of the plane tree is good, because all inventoried trees had an average degree of damage $\leq 20\%$.

Table 2. Damage caused to *Platanus acerifolia* street trees by biotic factors

Species	Assessed trees, N	Average degree of damage, %
<i>Corythucha ciliata</i> *	190	16
<i>Phyllonorycter platani</i> *	51	16
<i>Metcalfa pruinosa</i> *	74	13
<i>Apiognomonia veneta</i> **	85	17
<i>Erysiphe platani</i> **	17	8

*insect pests **fungal pathogens

The relative share of plane trees affected by the insect pests is as follows: *C. ciliata* (45.6%) – almost half of the inventoried specimens, while *Ph. platani* (12.2%) and *M. pruinosa* (17.7%) were represented with a low frequency among street trees. *Corythucha ciliata* is an invasive exotic pest native to North America that is widely distributed in Europe, as well as in Bulgaria (Dobreva et al., 2013). It is known that the leaf damage caused by nymphs and adults of *C. ciliata* and larvae of *Ph. platani* can cause significant leaf loss in plane trees, as well as physiological and aesthetic damage (Mutun, 2009; Tóth & Lakatos, 2018; Florian et al., 2022). Here, the degree of damage caused by these pests to London plane street trees in Sofia was negligible (Table 2). The development and fecundity of *C. ciliata* were found to decrease significantly as temperature increased. The optimal developmental temperature was determined to be 30°C, indicating a potential increase in pest infestation under extreme heat conditions (Ju et al., 2011; Lesovoy et al., 2023). For the first time in Bulgaria, we observed nymphs and adults of *M. pruinosa* on young shoots of plane trees. *M. pruinosa* is a very polyphagous native insect in North America and is currently a serious pest in Europe (Strauss, 2010; Chireceanu & Gutuie, 2011).

The pathogen *A. veneta* – a causal agent of plane tree anthracnose, was found to infect 20.4% of the inventoried trees, while powdery mildew (*E. platani*) infected only 4.1% of the trees. The degree of damage caused by these fungal pathogens was 17% and 8%, respectively (Table 2). *Apiognomonia veneta* is one of the most frequent and severe diseases affecting plane trees in Europe, leading to a weakening of the trees (Tello et al., 2005; Ivanová et al., 2010; Tubby & Pérez-Sierra, 2015). A negative effect on the health status of urban plane tree by the fungal pathogens *A. veneta* and invasive pest *C. ciliata* in Sofia was reported by Georgieva et al. (2023).

Trees in warmer urban areas are more water-stressed and in worse condition, which can exacerbate pest infestations. The stress from heat island effects and increased impervious areas surrounding them makes trees more susceptible to pests, leading to a vicious cycle of declining tree health and increasing pest problems (Dale et al., 2016).

Effective management, including regular maintenance and monitoring, is crucial to mitigate the risks of tree failure and ensure the health of *Platanus* street trees (Wang et al., 2023).

CONCLUSIONS

Platanus street trees play a vital role by providing numerous benefits to urban environments. However, their successful integration and long-term contribution require strategic planning and implementing effective management practices to maximize their positive impact in the urban green infrastructure. According to our research, the factors that contributed the most to the poor performance, structural damage, and health decline of plane street trees were drought and poor arboricultural practices. Therefore, best practices for sustainable management of London plane street trees should include: provision of enough space in the street design for development; formative pruning to establish strong structural framework, that should be maintained to maturity; irrigation of young specimens; systematic monitoring, and early detection of pests and diseases.

Further investigation into other factors that have been suggested as possible causes for poor street tree performance and their cumulative effect on urban London plane decline should be conducted.

The results from the research could be used to guide decision-making on species selection and management strategies.

ACKNOWLEDGEMENTS

This research has been supported in part by the scientific research project “Street trees of Sofia – current status, guidelines and recommendations for their management as an element of the green infrastructure of Sofia Municipality” which has received funding from Sofia Municipality (Project № NIS-OD-1153/2021). The authors gratefully acknowledge Prof. Anelya Pencheva, University of Forestry, for her assistance in the identification of fungal pathogens.

REFERENCES

Akhbarfar G., Nikbakht A., Etemadi N., Gailing O., 2023. Physiological and Biochemical Responses of Plantain Trees (*Platanus orientalis* L.) Derived from Different Ages to Drought Stress and *Ascophyllum nodosum* L. Extract. *Journal of Soil Science and Plant Nutrition*, 23(4), 5945–5961.

Anisimova S., 2023. Analysis of the dendrofloristic composition of urban street tree plantings in Sofia. *Sci. Papers Ser. B Hortic.*, 67(2), 430-437

AHB. 2022, 2023. Annual hydrometeorological bulletin. National institute of meteorology and hydrology of Bulgaria, Sofia, April 2023, ISSN 2738-781X, <https://bulletins.cfd.meteo.bg>

Caneva G., Bartoli F., Zappitelli I., Savo V., 2020. Street trees in Italian cities: story, biodiversity and integration within the urban environment. *Rendiconti Lincei* 31, 411–417.

Chireceanu C., Gutuie C., 2011. *Metcalfa pruinosa* (Say) (Hemiptera: Flatidae) identified in a new south eastern area of Romania (Bucharest area). *Journal of Plant Protection*, 4, 28-34.

Claude A., Nadam P., Brajon L., Leitao L., Planchais S., Lameth V., Castell J., Deller Y., Savouré A., Repellin A., Lemarie J., Puga-Freitas R., 2024. The isohydric strategy of *Platanus × hispanica* tree shapes its response to drought in an urban environment. *Physiologia Plantarum*. 176(6):e70021.

Dale A., Youngsteadt E., Frank S., 2016. Forecasting the effects of heat and pests on urban trees: Impervious surface thresholds and the 'pace-to-plant' technique. *Arboriculture and Urban Forestry*, 42(3).

David A., Boura A., Lata J.-C., Rankovic A., Kraepiel Y., Charlot C., Barot S., Abbadie L., Ngao J., 2018. Street trees in Paris are sensitive to spring and autumn precipitation and recent climate changes. *Urban Ecosystems*, Springer Verlag, 2017, 21 (1), 133-145.

Dobrescu E., Fabian C., 2017. The importance of trees in urban alignments. Study of vegetation on Kiseleff Boulevard, Bucharest. *Scientific Papers - Series B, Horticulture*, 61, 399-404.

Dobreva M., Simov N., Georgiev G., Mirchev P., Georgieva M., 2013. First Record of *Corythucha arcuata* (Say) (Heteroptera: Tingidae) on the Balkan Peninsula. *Acta Zologica Bulgarica*, 65 (3), 409-412.

Dumitrașcu M., Iliescu A., Mănescu C., Stănică F., Ionescu R., 2010. Problems of green areas integration in the supermarket parkings. *Acta Hortic.* 881, 615-618.

Duval V., Benedetti G., Baudis K., 2022. Thermal comfort produced by tree vegetation in the downtown area of Bahía Blanca (Argentina) *Ecol. Austral*, 32 (2), 502-515.

Eichhorn J., Roskams P., Potočić N., Timmermann V., Ferretti M., Mues V., Szepesi A., Durrant D., Seletković I., Schröck H., Nevalainen S., Bussotti F., Garcia P., Wulff S., 2020. Part IV: Visual assessment of crown condition and damaging agents. In: UNECE ICP Forests Programme Coordinating Centre. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany. Annex. 50-55.

Florian T., Poputa T., Bunesco H., 2022. *Corythucha ciliata* (Say, 1832) – Pest of Plane Trees (*Platanus* spp.) *Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Agric.*, 7(1), 15-20.

Franceschi E., Moser-Reischl A., Honold M., Rahman M., Pretzsch H., Pauleit S., Rötzer T., 2023. Urban environment, drought events and climate change strongly affect the growth of common urban tree species in a temperate city. *Urban For. Urban Green*, 88.

Galle N., Halpern D., Nitolsawski S., Duarte F., Ratti C., Pilla F., 2021. Mapping the diversity of streettree inventories across eight cities internationally using open data. *Urban Forestry & Urban Greening*, 61 127099.

Georgieva M., Georgieva M., Georgiev G., Hristova M., 2023. Assessment of plane trees health status in urban green areas of Sofia, Bulgaria. *Ecologia Balkanica*, 15 (1), 117-125.

Gillner S., Korn S., Roloff A., 2015. Leaf-gas exchange of five tree species at urban street sites, *Arboriculture and Urban Forestry*, 41 (3) 113-124.

Gregorová B., Černý K., Holub V., Strnadová V., 2010. Effects of climatic factors and air pollution on damage of London plane (*Platanus hispanica* Mill.). *Hort. Sci. (Prague)*. 37(3):109-117.

Haase D., Hellwig R., 2022. Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. *Trees, forests and people*, 8, 100252.

Hirsch M., Böddeker H., Albrecht A., Saha S., 2023. Drought tolerance differs between urban tree species but is not affected by the intensity of traffic pollution. *Trees*, 37 (1), 111-131.

Ivanová H., Bernadovičová S., Pastirčáková K., 2010. The influence of selected climatological characteristics on antracnose disease development in plane trees. *Ekologia Bratislava*, 29(4):430–440.

Ju R.-T., Wang F., Li B., 2011. Effects of temperature on the development and population growth of the sycamore lace bug, *Corythucha ciliata*. *J. Insect Sci.*, 11:16.

Lesovoy M., Chumak P., Pikovskyi M., Sykalo O., Zhuravel S., Trembitska O., Klymenko T., Vagaliuk L., 2023. Monitoring Research on Invasive Species of Bedbug (*Corytucha ciliata* say) in Green Areas of Kyiv. *Journal of Ecological Engineering*, 24(7), 1-7.

Miao C., Li P., Huang Y., Sun Y., Chen W., Yu S., 2023. Coupling outdoor air quality with thermal comfort in the presence of street trees: a pilot investigation in Shenyang, Northeast China. *Journal of Forestry Research*, 34:831–839.

Muscas D., Orlandi F., Petrucci R., Proietti Ch., Ruga L., Fornaciari M., 2024. Effects of urban tree pruning on ecosystem services performance. *Trees, Forests and People* 15 (2024) 100503.

Mutun S., 2009. *Corythucha ciliata*, a new *Platanus* pest in Turkey. *Phytoparasitica* 37, 65–66.

Ordóñez C., Sabetski V., Millward A., Steenberg J., Grant A., Urban J., 2018. The influence of abiotic factors on

street tree condition and mortality in a commercial-retail streetscape, *AUF*, 44 (3) 133-145.

Pelleteret P., Crovadore J., Cochard B., Pasche S., Bovigny P., Chablais R., Lefort F., 2017. Urban London plane tree dieback linked to fungi in the *Botryosphaeriaceae*, *Urban Forestry & Urban Greening* 22: 74–83.

Pencheva A., Anisimova S., 2016. Health status and aesthetic evaluation of horse chestnut (*Aesculus hippocastanum* L.) roadside trees in Sofia. *SilvaBalcanica*, 17(2): 5–16.

Roman L., Eisenman T., 2022. Drivers of street treespecies selection: The case of the London plane treesin Philadelphia. In: The Politics of Street Trees, eds. J. Woudstra, C. Allen. 1st edition. Routledge. London. 1-14.

Rotherham I., 2010. Thoughts on the politics and economics of urban street trees. *Arboric. Journal*, 33(2), 69–75.

Ryder C., Moore G., 2013. The arboricultural and economic benefits of formative pruning street trees. *Arboriculture & Urban Forestry*, 39(1): 17–24.

Sanusi R., Livesley S., 2020. London plane trees (*platanus x acerifolia*) before, during and after a heatwave: losing leaves means less cooling benefit. *Urban Forestry & Urban Greening*, 54, 126746.

Shen G., Song Z., Xu J., Zou L., Huang L., Li Y., 2023. Are Ecosystem Services Provided by Street Trees at Parcel Level Worthy of Attention? A Case Study of a Campus in Zhenjiang, China. *International Journal of Environmental Research and Public Health*, 20(1), 880.

Sherman A., Kane B., Autio W., Harris J., Ryan H., 2016. Establishment period of street trees growing in the Boston, MA metropolitan area. *Urban Forestry & Urban Greening*, 19:95–102.

Strauss G., 2010. Pest risk analysis of Metcalfa pruinosa in Austria. *Journal of Pest Science*, 83: 381-390.

Tan X., Shibata S., 2022. Factors influencing street tree health in constrained planting spaces: Evidence from Kyoto City, Japan, *Urban Forestry & Urban Greening* 67.

Tello M., Redondo C., Gaforio L., Pastor S., Mateo-Sagasta, E., 2005. Development of a disease severity rating scale for plane tree anthracnose. *Urban Forestry & Urban Greening*, 3, 93-101.

Tiwary A., Williams I., Heidrich O., Namdeo A., Bandaru V., Calfapietra C., 2016. Development of multi-functional streetscape green infrastructure using a performance index approach. Environmental pollution (Barking, Essex 1987), 208(Pt A), 209–220.

Tóth V., Lakatos F., 2018. Phylogeographic pattern of the plane leaf miner, *Phylloonycter platani* (Staudinger, 1870) (Lepidoptera: Gracillariidae) in Europe. *BMC Evolutionary Biology* 18, 135.

Tubby K., Pérez-Sierra A., 2015. Pests and pathogen threats to plane (*Platanus*) in Britain. *Arboricultural Journal*, 37(2), 85–98.

Wang Y., Wu Y., Sun Q., Hu C., Liu H., Chen C., Xiao P., 2023. Tree Failure Assessment of London Plane (*Platanus × acerifolia* (Aiton) Willd.) Street Trees in Nanjing City. *Forests*, 14(9), 1696.

Wood E., Esaias S., 2020. The importance of street trees to urban avifauna. *Ecological Applications*, 30 (7).

Xiong J., Qi H., Wang Q., Wang Sh., Zuo W., Sun, Y., 2019. Assessment of ecological benefit of street trees in urban community based on i-Tree model, *Journal of Nanjing Forestry University (Natural Sciences Edition)*, 43(02): 128-136.

Xu S., He X., Chen W., Huang Y., Zhao Y., Li B., 2015. Differential sensitivity of four urban tree species to elevated O₃. *Urban Forestry & Urban Greening*, 14(4):1166–1173.