

REVIEW ON THE CHEMICAL COMPOSITION OF ESSENTIAL OIL FROM *LAVANDULA* spp. AND ITS APPLICATIONS

Gabriela OPREA (BUTNARIU), Monica Luminița BADEA,
Adina NICHTA, Doru Ioan MARIN

University of Agronomic Sciences and Veterinary Medicine of Bucharest,
59 Mărăști Blvd, District 1, Bucharest, Romania

Corresponding author email: gabriela3020022002@yahoo.com

Abstract

Lavandula spp., known as lavender, belongs to the Lamiaceae family and is an aromatic plant with various uses, the most important of which are pharmaceutical (medicinal plant), food, cosmetics, detergents, industrial, perfumery, etc. The Lamiaceae family includes 47 species of flowering plants, and among *Lavandula* spp. we can mention: *Lavandula angustifolia*, *Lavandula dentata*, *Lavandula lanata*, *Lavandula latifolia*, *Lavandula multifida*, *Lavandula pedunculata*, *Lavandula stoechas*, *Lavandula viridis*, etc. This paper reviews studies and research conducted in the specialized literature over the last 10 years (2014-2024) on the characteristics and properties of *Lavandula* spp., thus providing a comprehensive overview of the use of essential oils and extracts in various fields. The variability of essential oil is discussed according to the species of lavender, geographical area (where it is cultivated), plant material (flowers, leaves, whole plant), and extraction methods.

Key words: chemical compounds, essential oil, *Lavandula*, multiple applications.

INTRODUCTION

Lavender (*Lavandula angustifolia* Mill.), also known as English lavender (syn. *Lavandula officinalis* L. Chaix et Vill., *Lavandula vera* DC), belongs to the Lamiaceae family.

The Lamiaceae family includes 47 species of plants (with flowers), and the genus *Lavandula* spp. comprises 39 species and numerous hybrids and varieties, which grow on all continents (North Africa, Southwest Asia, North and South America, Europe, India, and the Arabian Peninsula (Lis-Balchin, 2012; Messaoud, 2012).

The genus *Lavandula* spp. includes the following species: *Lavandula angustifolia* (English lavender), *Lavandula x allardii*, *Lavandula coronopifolia*, *Lavandula dentata* (toothed lavender/fringed lavender), *Lavandula x intermedia* (lavandin), *Lavandula lanata* (woolly lavender), *Lavandula latifolia* (Portuguese lavender), *Lavandula luisieri*, *Lavandula multifida* (Egyptian lavender), *Lavandula officinalis* (medicinal lavender), *Lavandula stoechas* (Spanish lavender), *Lavandula viridis* (Green Lavender) (<https://mymediterraneangarden.com/types-of-lavender/>).

[lavender/](https://www.pinterest.com/pin/140806232692625/)<https://www.pinterest.com/pin/140806232692625/>).

Lavandula spp. is a medicinal plant with a specific aroma, used in traditional medicine for many years, but also in other industries (detergents, perfumery, pharmaceuticals), and in landscaping as an ornamental plant in parks and gardens, as it is a plant that improves the soil in which it is grown (Chrysargyris et al., 2016; Giuliani et al., 2023; Laza and Rácz, 1975; Muntean et al., 2007; Patil et al., 2022). The main objective of this study is to provide a systematic overview of the essential oil derived from species of the genus *Lavandula*, to highlight the chemical composition of the volatile oil, as well as the diversity of its applications.

According to Giuliani (2023), *Lavandula angustifolia* Mill. has high commercial value due to its trichomes (secretory hairs), which are responsible for producing volatile substances. Essential oils derived from *Lavandula angustifolia* Mill. are rich in linalyl acetate, which gives them their characteristic scent, coumarin, tannin, a bitter principle, and the essential oil obtained by distilling the inflorescences (flowers) can be used in human

medicine (effective in treating early and moderate depression) (Shafiee-Kandjani et al., 2023), in the pharmaceutical industry (obtaining pharmaceutical products based on essential oil), cosmetics (creams, soaps), and in the perfume industry (cologne, perfumes) (Constantinescu et al., 2004).

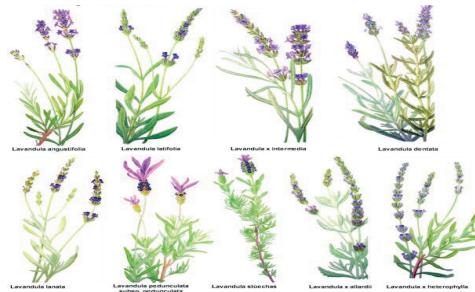


Figure 1. Various cultivars of the genus *Lavandula* spp.
Source: <https://in.pinterest.com/pin/12596073951347604/>

Lavandula angustifolia Mill. is a highly prized species worldwide, which means that lavender is cultivated (on all continents) and researched (all over the world), due to the species' multiple uses in various industries such as: the food industry, the paint industry, the detergent industry, the pharmaceutical industry, in medicine, but also as an ornamental (decorative) plant.

It is very important to note that if we want to cultivate lavender (especially when cultivating a specific variety), it is essential to know how to differentiate between: the use of the species for the production of essential oil, the use of the species for the production of cut flowers, or the use of the species strictly for ornamental purposes. At the same time, lavender has multiple uses, including: antibacterial, antiseptic, antispasmodic, aromatic, carminative, cosmetic, culinary, decorative, expectorant, medicinal, and stimulant.

Worldwide, research conducted on the *Lavandula* spp. species has extensively described both the chemical composition of the essential oil obtained by various methods and its main components (essential oil).

The chemical composition of the essential oil differs depending on the area of cultivation (continent, country), the species cultivated, and the variety, so that significant differences in chemical compounds have been reported.

Linalool (the most important chemical compound) has shown different concentration values depending on the results obtained by different researchers (Table 1).

Table 1. Linalool concentration in different countries where research on lavender essential oil has been conducted

Country	Linalool (%)	Sources/Year
<i>Lavandula angustifolia</i> Mill.		
Algeria	22,30	Djenane și colab., 2012
Bulgaria	30.10-33.70	Ognianov, 1994
Bulgaria	23.13-35.52	Todorova și colab., 2023
China	24.30	Xiaotiana și colab., 2020
Croaia	3.97	Blazekovic și colab., 2018
Cyprus	0.17-0.24	Chrysargyris și colab., 2016
France	9.30-68.80	Beale și colab., 2017
France	9.30-68.80	Lawerence, 1993
Greece	20.18	Adam și colab., 1998
Hungary	5.1-62.70	Detar și colab., 2021
India	23.60	Raina și Negi, 2012
India	35.30	Fakhari și colab., 2006
Italy	32.70	Evandri și colab., 2005
Italy	39.31	Alterii și colab., 2022
Poland	15.10-21.77	Walasek-Janusz, 2022
Romania	18.46-39.50	Oroian și colab., 2019
Romania	24.15-50.84	Gonceariuc și colab., 2018
Serbia	28.0-37.0	Lakusik și kolab., 2014
Syria	27.30-34.70	Al-Wassouf și colab., 2018
U.S.A.	29.00-33.00	Wang și colab., 2021
<i>Lavandula intermedia</i>		
Croatia	57.10	Blazekovic și colab., 2018
Italy	41.60	Garzoli și colab., 2019
Poland	25.53-29.56	Walaseck-Janusz, 2022
Romania	21.90	Marincă și Feher, 2018
<i>Lavandula latifolia</i>		
India	9.1	Al-Ansari și colab., 2021
Spain	30.34	Mendez-Tovar și col., 2016
<i>Lavandula officinalis</i>		
Argentine	53.50	Martucci și colab., 2015
Spain	34.34	Marin și colab., 2016
<i>Lavandula viridis</i>		
Porugal	0.93	
<i>Lavandula stoechas</i>		
Marocco	0.7	En-Zoubi și colab., 2022

Thus, among the main components present in lavender essential oil, we can mention monoterpenoids (most importantly linalool, linalyl acetate, 1,8-cineole, beta-ocimene, terpine-4-ol, and camphor, another important product).

Lavender essential oil also contains sesquiterpenoids (beta-caryophyllene) and other terpenoid compounds (Bikmoradi et al., 2017).

The importance of essential oil (volatile)

Research has shown that essential oil obtained from species of the genus *Lavandula* spp. (Table 2) has a very high content and many beneficial effects on the human body, and is also used in various fields (Plotto and Roberts, 2001; Cavanach et al., 2002, Hyldgaard et al., 2012; Gutierrez, 2008; Adaszynska et al., 2013; Nieto, 2017; Sarkik and Stappen, 2018), including:

Cosmetics and pharmaceuticals - the perfume industry (cologne) and cosmetics (body care, detergents, face creams, hand creams, skin care, shampoos, shower gels, soaps,), in pharmaceuticals (flavoring ointments, infusions, tinctures - *Lavandula angustifolia* being preferred due to its strong scent), industrial preparations with sedative and cholagogue effects and for internal use, pharmaceutical preparations such as *Acetum Aromaticum* (aromatic vinegar), *Spiritus Lavandulae* (lavender-flavored alcohol), and *Tinctura vulneraria* (wound tincture). (Luchian et al., 2017, Păun et al., 1988, Pârvu et al., 2006, Prisăcaru et al., 2009)

Dendrological and ornamental - real interest from an ornamental point of view (flower color - from red to dark blue, fragrance, foliage persistence), dwarf species suitable for parks and gardens (simple borders or in combination with other species, in rockeries alongside other perennial species), cultivated alone or in various floral compositions. (Iliescu, 2005, Pârvu, 2006)

Food - preparation of cakes, dishes, juices, honey (very good nectar-producing capacity - nectar- and pollen-producing species), yielding about 50-100 kg of high-quality honey/ha, with a pleasant taste and specific aroma, medium economic and beekeeping value (Pârvu, 2006).

Industry - in the porcelain industry (Yegorova, 2011), in ceramics (good solvent and paint fixative), insect repellent (for combating moths), tobacco (anti-asthmatic cigarettes). (Constantinescu et al., 2004, Munteanu, 1988 cited by Roman, 2008, Muntean, 1990, Stănescu et al., 2014, Pârvu, 2016).

Medical and therapeutic in both human and folk medicine (internal use - antiseptic, antispasmodic, healing, and soothing action, and external use - when we are tired, for rheumatism, whooping cough, flu, bronchitis,

digestive disorders, and headaches). It increases bile secretion, helping to relieve stomach pain, as well as in traditional veterinary medicine (internal use - to treat lack of thirst, a few drops of essential oil are added to water, encouraging animals to drink (Bakkali et al., 2008; Hassiotis et al., 2010; Ion et al., 2008, Păun et al., 1988, Pârvu, 2006, Pârvu et al., 2016).

Lavender essential oil, obtained from plants of the *Lavandula* genus, has various beneficial effects on the body due to the active compounds in its composition.

Other therapeutic uses of the essential (volatile) oil

Antifungal action: Lavender essential oil has antifungal properties and can be used to treat fungal infections, such as athlete's foot, or to inhibit the fungus *Ustilaginoidea virens* (inhibition of hyphal growth, dry weight of mycelium, conidia germination, and conidia production) that attacks rice crops (Fu et al., 2024).

Antibacterial action: Lavender essential oil has antibacterial properties and can be used to treat bacterial infections such as acne, as well as promising antibacterial activity against some strains of *S. aureus* and *E. coli* (Soulaimani et al., 2025).

Anti-inflammatory action: Lavender essential oil has anti-inflammatory properties and can be used to relieve inflammation and reduce (skin) inflammation in atopic dermatitis (Duan et al., 2024).

Sedative action: Lavender essential oil has sedative properties and can be used to help reduce stress and anxiety, especially in children who need to undergo endoscopy (Aydin et al., 2025).

Analgesic action: Lavender essential oil has analgesic properties and can be used to help relieve headaches and other pains, as well as to treat chronic prostatitis with the help of creams based on lavender essential oil (Wang et al., 2025).

Antispasmodic action: Lavender essential oil has antispasmodic properties and can be used to help relieve muscle spasms or prevent pain in pediatric patients (children) undergoing surgery (tonsillectomy), reducing postoperative pain (Ahmadi et al., 2023).

Antidepressant action: Lavender essential oil can be used to help alleviate symptoms of depression and other mental health issues through the effects of aromatherapy. Inhaling the essential oil has a calming effect, reducing depression and leading to more restful sleep in patients who have suffered strokes (Yin et al., 2024).

Due to these properties, lavender essential oil is frequently used as an ingredient in medicinal and cosmetic products.

Table 2. The use of essential oil derived from lavender species of the genus *Lavandula* spp.

Species	Use
1. <i>Lavandula x allardii</i>	cosmetics, food industry, perfume industry, pharmaceutical industry
2. <i>Lavandula angustifolia</i> Mill.	acaricidal effect, allelopathy, aromatherapy, cosmetics, food industry (food products), insecticidal effect, soil modification, repellent, therapeutic potential, veterinary products
3. <i>Lavandula coronopifolia</i>	food industry (food products), therapeutic potential, soil phytoremediation, veterinary use (veterinary products)
4. <i>Lavandula dentata</i>	therapeutic potential
5. <i>Lavandula x intermedia</i>	Food industry (in nutrition), in medicine (anesthetic)
6. <i>Lavandula latifolia</i>	food industry, medicine (medicinal purpose), use as insecticide
7. <i>Lavandula luisieri</i>	in medicine (antifungal drugs) veterinary medicine (for appetite and thirst in animals), use as insecticide
8. <i>Lavandula multifida</i>	therapeutic potential
9. <i>Lavandula officinalis</i>	medicine (medicinal purpose)
10. <i>Lavandula stoechas</i> L.	cosmetics, perfume industry, pharmaceutical industry, therapeutic potential,

The species of lavender and the uses of the essential oil extracted from each species will be listed below as follows:

1. *Lavandula x allardii* - cosmetics, food industry, perfume industry, pharmaceutical industry (Chasiotis et al., 2001);

2. *Lavandula angustifolia* Mill. - acaricidal effect (Perrucci et al., 1996; Kaya, 2010), allelopathy (Sidorenko et al., 1995), aromatherapy (Lis-Balchin & Hart, 1999; Evandri et al., 2005; Donatello et al., 2020), cosmetics (Koniger, 1997; Fakhari et al., 2005; Kunicka-Styczynska, 2009; Adaszynska et al.,

2013; Kunicka-Styczynska et al., 2015; Saeed et al., 2023), food industry (food products) (Fenaroli, 1998; Fakhari et al., 2005; Adaszynska et al., 2013; Fascella et al., 2020), insecticidal effect (Carson & Riley, 1995; Sertkaya et al., 2010; Khosravi et al., 2013; Yazdani et al., 2013; Julio et al., 2014; El Abdali et al., 2022; Ez-zoubi et al., 2022), soil modification (Yohalem et Passey, 2011), repellent (Warren et al., 1997) therapeutic potential (Bertram, 1995; Buyukokuroglu et al., 2003; Hajhashemi et al., 2003; Woronuk et al., 2011; Raut & Karuppayil, 2014; Koziol et al., 2015; Kivrak, 2018; Malcolm & Tallian, 2018; Bialon et al., 2019; Donatello et al., 2020; Zeinab et al., 2020; Detar et al., 2021; Doha et al., 2021; Firoozeei et al., 2021; Villalpando et al., 2022; Saeed et al., 2023), veterinary products (Wren, 1988; Ercan & Esma, 2019);

3. *Lavandula coronopifolia* - food industry (food products) (Preedy, 2016), therapeutic potential (Said et al., 2015; Hasanin et al., 2020; Naseef et al., 2022.), soil phytoremediation (Shafagha et al., 2012), veterinary use (veterinary products) (Ferguson, et al., 2013.);

4. *Lavandula dentata* - therapeutic potential (El Abdali, 2022; Bouyahya et al., 2023);

5. *Lavandula x intermedia* - food industry (in nutrition) (Fenaroli, 1998), in medicine (anesthetic) (Krasteva et al., 2021, Yigit et al., 2022);

6. *Lavandula latifolia* - food industry (Fenaroli, 1998; Mendez-Tovar et al., 2016), medicine (medicinal purpose) (Rodrigues et al., 2012; Herraiz-Peñalver et al., 2013; Gayoso et al., 2018; Al-Ansari et al., 2021), use as insecticide (Al-Ansari et al., 2021);

7. *Lavandula luisieri* - in medicine (antifungal drugs) (Zuzarte, et al., 2012), disinfectant solution (antiseptic) (Gonzalez-Coloma et al., 2011);

8. *Lavandula multifida* - therapeutic potential (Benbelaid, 2012);

9. *Lavandula officinalis* - medicine (medicinal purpose) (Meftahizade et al., 2011; Imene, 2012; Et-Touys et al., 2016; Kivrak, 2018).

10. *Lavandula stoechas* L. - cosmetics (Bouyahya et al., 2017), perfume industry (Repici, 2019), pharmaceutical industry (Repici, 2019), therapeutic potential (Bouyahya et al., 2017; Choghrani et al., 2021; Rasheed et al., 2023).

Harvesting

Species of the genus *Lavandula* spp. shall be harvested at the optimum time, which shall be determined with precision. Thus, the flowering period of the species *Lavandula angustifolia* Mill. (Lavender) comprises four distinct stages (phases): *budding* (inflorescences are budding); *the beginning of flowering* (25% of the flowers are in bloom); *full flowering* (50% of the flowers are in bloom); *the end of flowering* (85% of the flowers are past their prime), where harvesting must be carried out before 12 noon (because the oil content increases continuously), and after 4 p.m. (it decreases significantly), noting that the most recommended hours for harvesting are 10 a.m. to 12 p.m. (on small areas) and 9 a.m. to 2 p.m. (on large areas), harvesting not being recommended in cloudy or cool weather, this being done manually with a sickle or mechanically with the help of machines specially mounted on tractors.

Chemical composition of essential oil

Currently, in the specialized literature, as well as in research conducted on the genus *Lavandula* spp., there is a wealth of data on the composition of essential oil (Cavanagh and Wilkinson, 2005; Bombarda et al., 2008; Gyrai et al., 2008; Baydar and Kineci, 2009, Danh et al., 2013; Binello et al., 2014; Aprotosoaie et al., 2017; Dris et al., 2017; Tardugno et al., 2019; Detar et al., 2020; Giuliani et al., 2023)

All results obtained regarding the composition of essential oil mention that it (the oil) is greatly influenced by the origin of the species, the cultivated genotype (Muñoz-Bertomeu et al., 2007; Stanev, 2010), the stage of development of the species (Lacusik et al., 2014), agronomic factors (plant growth and development) as well as pedoclimatic factors (climate and soil), agrotechnical factors (cultivation technology applied, soil tillage, sowing, crop care, harvesting) (Renaud et al., 2001; Angioni et al., 2006; Pinto et al., 2007; Erbaş & Baydar, 2008, Kara & Baydar, 2013; Camen et al., 2016; Garcia-Caparros et al., 2019; Lyczko et al., 2019; Fascella et al., 2020; Pecanha et al., 2021), plant parts (Geisel et al., 2004; Lakusic et al., 2014) extraction method, storage and

processing of biological material (Chemat et al., 2006; Karapandzova et al., 2014; Babu et al., 2016; Duskova et al., 2016; Salata et al., 2020).

Numerous authors who have studied the chemical composition of essential oil have demonstrated, through their research findings, the presence of significant differences in its composition. These variations are primarily attributed to the extraction method used, such as hydrodistillation or microwave-assisted extraction.

Thus, microwave-assisted extraction significantly accelerates the process of obtaining essential oil, without causing notable changes in its chemical composition.

According to the scientific literature, essential oil contains over one hundred chemical constituents, the main compounds being linalool (with a concentration ranging from 9–69%) and linalyl acetate (1.2–59%) (Beale et al., 2017)

The quality of essential oil derived from *Lavandula* spp. is determined by its high content of linalool and linalyl acetate (Figure 2 and Figure 3), as well as by the ratio in which these two components are present in its chemical composition (Beale et al., 2017).

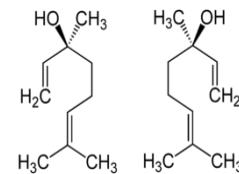


Figure 2. Linalool

Source: <https://sk.wikipedia.org/wiki/Linalool>

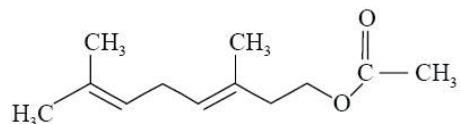


Figure 3. Linalyl acetate

Source: <https://alchetron.com/Linalyl-acetate>

According to Noyraska (2023), essential oil is actually the product generated from an aromatic plant through the process of distillation (hydrodistillation), which is then followed by the process of separation from the aqueous phase, bearing the generic name of essential oil (EO). Dias (2021) mentions that essential oil represents a complex liquid

mixture of various secondary metabolites (different concentrations), which are classified into two main groups as follows: **hydrocarbons** (*diterpenes, monoterpenes, sesquiterpenes*) and **oxygenated compounds** (hydrocarbon derivatives), including *alcohols, aldehydes, ketones, esters, oxides*, etc.

Both the quantity and quality of essential oil obtained from *Lavandula* spp. are influenced by several factors, including: plant material, age of the plant (bush), the health of the plant (bush), the soil and climate conditions during the harvesting of the plant material, the conditions for the growth and development of the plants (bushes), the method of drying the plant material, and the method used to extract the essential oil, all play a very important role.

Essential oils extracted from medicinal plants, particularly from species belonging to the *Lavandula* spp. genus, have been known and used since ancient times. These oils exhibit a wide range of biologically active properties, including antimicrobial, antioxidant, antitumoral, antiseptic, digestive, antispasmodic, and neuro-sedative effects. Moreover, essential oils have been studied as alternative sources to commercial pesticides for ecological preservation, with their active compounds forming the basis of effective defense strategies against herbivorous pests. Significant differences are observed among the cultivated genotypes. Research indicates that, in some cases, the highest concentration of linalool (%) was recorded in the middle of the flowering period, while the highest concentration of linalyl acetate (%) was observed at the end of flowering. In other cases, research shows that large amounts of linalool were recorded (from flowering to the end of the flowering phenophase), and the concentration of linalyl acetate decreased considerably (Baydar and Kineci, 2009) Cantor et al., 2018; Detar et al., 2011).

In other cases, various researchers mention that the three chemical compounds (linalool, terpinen-4-ol, and 1,8-cineole) were found in very high concentrations when the inflorescences (flowers) were in the bud stage. It is recommended that inflorescences be harvested in the early part of the day because that is when they contain the highest amount of oil and active ingredients. They are detached

from the inflorescence axis, or the entire inflorescence is harvested (Constantinescu, 2004).

The raw material is provided by the inflorescences (*Lavandulae flos*, *Lavanduale angustifoliae flos*) (Muntean, 1996).

Lavender flowers (*Lavandula angustifolia* Mill.) contain essential oil (0.7-1.4%) which is composed of linalyl acetate (30-40%), linalool acetate, geraniol, nerol, lavandulol, borneol, (+) citronellol, (+)-terpinen-1-ol, (+)-epoxy-dihydro-linalool, isogeraniol, cumin alcohol, traces of α -bisabolol, amyl and isoamyl alcohol, n-hexyl alcohol, valeric, isovaleric, propionic, caproic acids, terpenic hydrocarbons, coumarin, herniarin, furfural, etc., tannin, a bitter principle, mineral substances. The flowers are characterized by a pleasant, strongly aromatic scent and a slightly bitter taste. (Pârvu et al., 2016).

Lavender contains volatile oils (approximately 1.5% dry matter), which contain at least 34% esters, tannins (5-10%), coumarins and furanocoumarins (herniarin), flavonoids (luteolin), phytosterols, sterolic saponosides (rosmarinic, ursolic, and oleanolic acids). (Burzo et al., 2005, Burzo, 2013)

We also find: coumarins (herniarin), anthocyanins (delphinidin, malvidin), flavones (luteolin), phenolic acids (rosmarinic acid, chlorogenic acid), triterpenes (ursolic acid, oleanolic acid, betulinic acid, pomilic acid-3,19-dihydroxy-12-ursen-28-oic acid), betulin (Lis-Balchin, 2002 cited by Burzo I, 2015).

Monoterpene s are found in concentrations of 50-90% in lavender flowers, sesquiterpenes in concentrations of 7.5-15.0%, and triterpenoids have the lowest concentration (Bakkali et al., 2008; Lesage-Meessen et al., 2015; Chrysargyris et al., 2016).

The chemical compounds are many and varied, but they vary depending on the species cultivated. The content of oxygenated monoterpenes differs from species to species (cultivated species), and in the case of *Lavandula angustifolia* Mill. (36-93%), *Lavandula x intermedia* (68-93%), *Lavandula stoechas* (46-93%), and *Lavandula latifolia* (85-94%).

Additionally, oxygenated monoterpenes have been found in high concentrations in the species *Lavandula lusieri*, *Lavandula*

pedunculata, and *Lavandula viridis*. The species *Lavandula angustifolia*, *Lavandula luisieri*, and *Lavandula stoechas* have a high content (more than 20%) of sesquiterpenes in their essential oil (Aprotoisoiae et al., 2017).

Among the monoterpenoids of fatty acids found in lavender inflorescences, the most important are: linalool, terpinen-4-ol, α -terpineol, borneol, lavandulol, linalyl acetate, lavandulyl acetate, geranyl acetate, geranyl propionate, camphor, fenchone, thujone, and 1,8-cineole, while the most frequently reported monoterpenes found in lavender fatty acids are: limonene, cis- β -ocimene, and trans- β -ocimene. From the sesquiterpenes group, we can mention: β -caryophyllene, β -farnesene, caryophyllene oxide, and viridiflorol (Chrysargyris et al., 2016).

The volatile oil contains a mixture of mono- and sesquiterpenes, of which borneol (40.73%) and tau-cadinol (27.02%) account for the largest proportion. Other substances identified in lavender essential oil had the following proportions: linalool (4.51%), α -cadinene (3.44%), β -phellandrene (2.97%), camphor (2.79%), α -pinene (1.96%), α -santalene (1.13%), caryophyllene oxide (1.17%), cubenol (0.94%), neryl acetate (0.81%), p-cymene-8-ol (0.69%), bornyl acetate (0.66%), geranyl acetate (0.56%) and α -terpineol (0.41%). (Burzo and Toma, 2013 cited by Burzo, 2015) By analyzing the volatile oil extracted by Boelens (1986), 44 components were identified, including linalool (41.70%), 1,8-cineol (26.30%), and camphor (12.80%). Concentrations higher than 1% were found for β -pinene (2.10%), α -bisabolene (1.90%), α -pinene (1.80%), β -caryophyllene (1.40%), limonene (1.10%), linalyl acetate (1.10%), and α -terpineol (1.00%). Concentrations lower than 1% were determined for borneol, camphene, lavandulol, sabinene, terpinen-4-ol, δ -cadiene, α -humulene, bornyl acetate, trans-linalool oxide, α -p-dimethylstyrene, isoborneol, cis-linalool oxide, myrcene, (E)- β -ocimene, 3-octanone, 1-octenol-3, α -terpinene, γ -terpinene, terpinolene, coumarin, geraniol, (Z)-beta-ocimene, 1-octanol, α -phellandrene, butyl acetate, caryophyllene oxide, dihydrocoumarin, eugenol, 1-hexanol, hexyl acetate, isoamyl acetate, nerol, and α -thujen. (Burzo et al., 2005; Prisăcaru et al., 2009).

The leaves and stems contain small amounts of essential oil. The organic substances highlighted contain N, P, K, Ca, Mg, B, Fe, Mn, and Cu.

Essential oil production varies with the age of the plant: it reaches its maximum after approximately 5-7 years and becomes very low after 10-12 years. The maximum oil content is found at the beginning of flowering between 9 a.m. and 2 p.m. (Pârvu et al., 2016).

The flowers of *Lavandula angustifolia* Mill. contain essential oil (volatile) in quantities that depend on the variety, species, and time of harvest, as well as linalool acetate, lavandulol, terpenic hydrocarbons, tannins, minerals, etc. Dried lavender flowers contain 1.5-3% essential oil, and fresh flowers contain 0.55-1.5% - linalool (up to 30%), linalyl acetate (up to 40%), geraniol, linalool valerate, borneol, linalyl butyrate. The flowers also contain triterpenic acids, flavonoids, resins, coumarins, bitter principles, cineol, tannins, and minerals (Luchian et al., 2017).

Lavender also has active ingredients such as coumarins and caffeic acid derivatives (Rîșca, 2016).

CONCLUSIONS

The volatile oil of *Lavandula* is highly valued for its complex chemical composition, especially its high content of linalool and linalyl acetate, which confer multiple therapeutic and cosmetic properties. The variability of its active compounds depends on the species, cultivation conditions, and extraction methods, influencing its efficacy across various applications. Due to its antimicrobial, antioxidant, and sedative effects, *Lavandula* oil holds significant potential in pharmaceutical, food, and cosmetic industries. Furthermore, its use as an ecological alternative to synthetic pesticides underscores its importance in sustainable agriculture. Continuous standardization and research are essential to fully harness its properties and ensure the quality of lavender-based products.

ACKNOWLEDGEMENTS

This paper was written as part of the Doctoral School of Plant and Animal Resource

REFERENCES

Abolhassanzadeh, Z., Iraji, A., Vojoud, M., Heydari, M. & Shams M. (2020). Efficacy of inhaled *Lavandula angustifolia* Mill. Essential oil on sleep quality, quality of life and metabolic control in patients with diabetes mellitus type II and insomnia. *Journal of Ethnopharmacology*, 251, 112560.

Adaszynska, M., Swarcewicz, M., Dzieciol, M., Dobrowolska, A. (2013). Comparison of chemical composition and antibacterial activity of lavender varieties from Poland. *Natural Product Research*, 27, 1497–1501.

Al-Ansari, A.M.M.M, Ahmed, M.I.A., Vijayaraghavan, P., Alnahmi, E., AlMalki, R.H., Rahman, A.A. & Choi K.C. (2021). Insecticidal, antimicrobial and antioxidant activities of essential oil from *Lavandula latifolia* L. and its deterrent effects on *Euphorbia leucographa*. *Industrial Crops & Products*, 170, 113740.

Angioni, A., Barra, A., Coroneo, V., Dessi, S. & Cabras, P. (2006). Chemical composition, seasonal variability, and antifungal activity of *Lavandula stoechas* L. ssp. *Stoechas* essential oils from stem/leaves and flowers. *Journal of Agricultural and Food Chemistry*, 54, 4364–4370.

Aprotosoaie A.C., Gille E., Trifan A., Luca V.S. & Miron A. (2017). Essential oils of *Lavandula* genus: a systematic review of their chemistry. *Phytochemistry Reviews*, 16, 761–799.

Babu K., Sharma G.D. & Singh, B. (2016). Volatile composition of *Lavandula angustifolia* produced by different extraction techniques. *Journal of Essential Oil Research*, 28, 489–500.

Bakkali, I.F., Averbeck, S., Averbeck, D. & Idaomar M. (2008). Biological effects of essential oils – A review, *Food and Chemical Toxicology*, 46 (2), 446–475.

Baydar, H. & Kineci, S. (2009). Scent Composition of Essential Oil, Concrete, Absolute and Hydrosol from Lavandin (*Lavandula x intermedia* Emeric ex Loisel.). *Journal of Essential Oil-Bearing Plants*, 12, 131–136.

Beale, D.J., Morrison, P.D., Karpe, A.V. & Dunn, M.S. (2017). Chemometric Analysis of Lavender Essential Oils Using Targeted and Untargeted GC-MS Acquired Data for the Rapid Identification and Characterization of Oil Quality. *Molecules*, 22, 1339.

Benbelaid, L. F., Bendahou, M., Khadir, A., Abdoune, M. A., Bellahsene, C., Zenati, F., Bouali W. & Abdelouahid D.E. (2012). Antimicrobial activity of essential oil of *Lavandula multifida*. *Journal of Microbiology and Biotechnology Research*, 2(2), 244–247.

Bertram, T. (1995). *Encyclopaedia of Herbal Medicine*, 1st edn. *Grace Publishers, Dorset*.

Bialon, M., Krzyska Lupicka, T., Nowakowska-Bogdan, E. & Wieczorek, P.P. (2019). Chemical Composition of Two Different Lavender Essential Oils and Their Effect on Facial Skin Microbiota. *Molecules*, 24(18), 3270.

Bikmoradi, A., Khaleghverdi, M., Seddighi, I., Moradkhani, S., Soltanian, A. & Cheraghi F. (2017). Effect of inhalation aromatherapy with lavender essence on pain associated with intravenous catheter insertion in preschool children: a quasi-experimental study. *Complementary Therapies in Clinical Practice*, 28, 85–9.

Binello, A., Orio, L., Pignata, G., Nicola, S., Chemat, F. & Cravotto, G. (2014). Effect of microwaves on the in situ hydrodistillation of four different *Lamiaceae*. *Comptes Rendus Chimie*, 17, 181–186.

Bombarda, N., Dupuy, J.P. & Le Van Da Gaydou, E.M. (2008). Comparative chemometric analyses of geographic origins and compositions of lavandin var. Grossos essential oils by mid infrared spectroscopy and gas chromatography, *Analytica Chimica Acta*, 613(1), 31–39.

Bouyaha, A., Chamkhi, I., El Meniyi, N., El Moududden, H., Harhar, H., El Idrissi, Z. L., Khouchlaa, A., Jouadi, I., El Baaboua, A., Taha, D., Balahbib, A., Khalid, A., Abdalla, A., Zengin, G., Simal-Gandara, J. & El Omari, N. (2023). Traditional use, phytochemistry, toxicology, and pharmacological properties of *Lavandula dentata* L.: A comprehensive review, *South African Journal of Botany*, 154, 67–87.

Bouyaha, A., Et-Touys, A., Abrini, J., Talbaoui, A., Fellah, H., Bakri, Y. & Dakka, N. (2017). *Lavandula stoechas* essential oil from Morocco as novel source of antileishmanial, antibacterial and antioxidant activities, *Biocatalysis and Agricultural Biotechnology*, 12, 179–184.

Burzo, I., 2015. Compoziția plantelor medicinale și alimentare din flora spontană și cultivată, Editura Elisavaros, București

Burzo, I., Constantin, T. (2013). Țesuturile secrete și substanțele volatile din plante, Ediția a II-a revăzută și adăugită, Iași, Editura Universității "Alexandru Ioan Cuza"

Buyukokuroglu, M.E., Gepdiremen, A., Hacimutluoglu, A. & Oktay, M. (2003). The effects of aqueous extract of *Lavandula angustifolia* flowers in glutamate-induced neurotoxicity of cerebellar granular cell culture of rat pups. *Journal of Ethnopharmacology*, 84, 91–94.

Camen, D., Hadaruga, N., Luca, R., Dobrei, A., Nistor E., Posta, D., Dobrei, A., Velicevici, G., Petcov, A. & Sala, F. (2016). Research Concerning the Influence of Fertilization on Some Physiological Processes and Biochemical Composition of Lavender (*Lavandula Angustifolia* L.). *Agriculture and Agricultural Science Procedia*, 10, 198–205.

Cantor, M., Vlas, N., Szekely-Varga, Z.S., Jucan, D. & Zaharia, A. (2018). The influence of distillation time and the flowering phenophase on quantity and quality of the essential oil of *Lavandula angustifolia* cv. 'Codreanca'. *Romanian Biotechnological Letters*, 23.

Carson, C.F. & Riley, T.V. (1995). Antimicrobial activity of the major components of the essential oil of *Melaleuca alternifolia*. *Journal of Applied Bacteriology*, 78, 264–269.

Cavanagh, H.M.A. & Wilkinson, J.M. (2005). Lavender essential oil: A review. *Australian Infection Control*, 10, 35–37.

Chasiotis, V., Tzempelikos, D., Mitrakos, D. & Filios, A. (2021). Numerical and experimental analysis of heat and moisture transfer of *Lavandula x allardii* leaves during nonisothermal convective drying. *Journal of Food Engineering*, 311, 110708.

Chemat, F., Lucchesi, M.E., Smadja, J., Favretto, L., Colnaghi, G. & Visinoni, F. (2006). Microwave accelerated steam distillation of essential oil from lavender: A rapid, clean and environmentally friendly approach. *Analytica Chimica Acta*, 157–160.

Chograni, H., Riahi, L. & Messaoud, C. (2021). Variability of qualitative and quantitative secondary metabolites traits among wild genetic resources of *Lavandula stoechas* L. *Biochemical Systematics and Ecology*, 98, 104327.

Chrysargyris, A., Panayiotou, C. & Tzortzakis, N. (2016). Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (*Lavandula angustifolia* Mill.). *Industrial Crops and Products*, 83, 577–586.

Constantinescu D., Hațieganu E., Bușuricu F. (2004). Plante medicinale utilizate în terapeutică, București, Editura Medicală, București

Danh, L.T., Han, L.N., Triet, N.D.Y., Zhao, J., Mammucari, R. & Foster N. (2013). Comparison of Chemical Composition, Antioxidant and Antimicrobial Activity of Lavender (*Lavandula angustifolia* L.) Essential Oils Extracted by Supercritical CO₂, Hexane and Hydrodistillation. *Food and Bioprocess Technology*, 6 (12), 3481–3489.

Détár E., Németh É.Z., Gosztola B., Demján I., Pluhar Z. (2020). Effects of variety and growth year on the essential oil properties of lavender (*Lavandula angustifolia* Mill.) and lavandin (*Lavandula x intermedia* Emeric ex Loisel.), *Biochemical Systematics and Ecology*, Volume 90, June 2020, 104020

Detar, E., Zambori-Nemeth, Gosztola B., Harmath A., Ladanyi, M. & Pluhar, Z. (2021). Ontogenesis and harvest time are 92 crucial for high quality lavender – Role of the flower development in essential oil properties. *Industrial Crops and Products*. 163, 113334.

Doha, H., Baker, A., Amarowicz, R., Ali, A.K.M.A & Ibrahim E.A. (2021). Antiviral activity of *Lavandula angustifolia* L. and *Salvia officinalis* L. essential oils against avian influenza H5N1 virus, *Journal of Agriculture and Food Research*, 4, 100135.

Donatello, N.N., Emer, A.A., Salm, D.C., Lutdk, D.D., Bordignon, S.A.S.R., Ferreira J.K., Salgado, A.S.I., Venze, D., Bretanha, L.C., Micke, G.A. & Martins, D.F. (2020). *Lavandula angustifolia* essential oil inhalation reduces mechanical hyperalgesia in a model of inflammatory and neuropathic pain: The involvement of opioid and cannabinoid receptors. *Journal of Neuroimmunology*, 340, 577145.

Dris, D., Tine-Djebbar, F. & Soltani, N. (2017). *Lavandula dentata* essential oils: chemical composition and larvicidal activity against Culicidae. *African Entomology*, 25, 387–394.

Duskova, E., Dusek, K., Indrak, P. & Smekalova, K. (2016). Postharvest changes in essential oil content and quality of lavender flowers. *Industrial Crops and Products*, 79, 225–231.

El Abdali, Y., Agour, A., Allali, A., Bourhia, M., El Moussaoui, A., Eloutassi, N., Salamatullah, A.M., Alzahrani, A., Ouahmane, L., Aboul-Soud, M.A.M., Giesy, J.P. & Bouia, A. (2022). *Lavandula dentata* L.: Phytochemical Analysis, Antioxidant, Antifungal and Insecticidal Activities of Its Essential Oil. *Plants*, 11, 311.

Erbaş, S. & Baydar, H. (2008). Effects of harvest time and drying temperature on essential oil content and composition in lavandin (*Lavandula × intermedia Emeric × Loisel.*). *Turkish Journal Of Field Crops*, 13, 24–31.

Ercan, K. & Esma, S. (2019). Anesthetic and sedative efficacy of peppermint (*Mentha piperita*) and lavender (*Lavandula angustifolia*) essential oils in blue dolphin cichlid (*Cyrtocara moorii*). *Turkish Journal of Veterinary & Animal Sciences*, 43(3), 5.

Et-Touys, A., Fellah, H., Mnioil, M., Bouyahya, A., Dakka, N., Abdennnebi, E.H., Sadak, A. & Bakri, Y. (2016). Screening of antioxidant, antibacterial and antileishmanial activities of *Salvia officinalis* L. extracts from Morocco. *British Microbiology Research Journal*, 16, 1–10.

Evandri, M. G., Battinelli, L., Daniele, C., Mastrangelo, S., Bolle, P. & Mazzanti, G. (2005). The antimutagenicactivity of *Lavandula angustifolia* (lavender) essential oil in the bacterial reverse mutation assay. *Food and Chemical Toxicology*, 43(9), 1381–1387.

Ez-zoubi, A., Ez zoubi, Y., Ramzi, A., Fadil, M., Lalami, A.E.O. & Farah A. (2022). Ethanol and glycerol green emulsifying solvent for the formation of a *Lavandula stoechas* essential oil/β-cyclodextrin inclusion complex: mixture design and adulticidal activity against *Culex pipiens*. *Heliyon*, 8 (8), e10204

Fakhari, A.R., Salehi, P., Heydari, R., Ebrahimi, S.N. & Haddad, P. (2005). Hydrodistillation-headspace solvent microextraction, a new method for analysis of the essential oil components of *Lavandula angustifolia* Mill. *Journal of Chromatography A*, 1098, 14–18.

Fascella, G., D'Angiolillo, F., Rubertob, G. & Napolib, E. (2020). Agronomic performance, essential oils and hydrodistillation wastewaters of *Lavandula angustifolia* grown on biochar-based substrates. *Industrial Crops & Products*, 154, 112733

Fenaroli, G. (1998). Fenaroli's Handbook of Flavor Ingredients, Vol. 1, 3rd edn, CRC Press.

Ferguson, C.E., Kleinman, H.F. & Browning, J. (2013). Effect of Lavender Aromatherapy on Acute-Stressed Horses, *Journal of Equine Veterinary Science*, 33(1), 67–69.

Firoozee, T.S., Feizi, A., Rezaeizadeh, H., Zargaran, A., Roohafza, H.R. & Karimi, M. (2021). The antidepressant effects of lavender (*Lavandula angustifolia* Mill.): A systematic review and meta-

analysis of randomized controlled clinical trials. *Complementary Therapies in Medicine*, 59, 102679.

Garcia-Caparros, P., Romero, J., Llanderal, A., Cermenio, P., Lao, M.T. & Segura, M.L. (2019). Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six *Lamiaceae* species. *Water*, 11, 573.

Gayoso, L., Roxo, M., Caverio, R.Y., Calvo, M.I., Ansorena, D., Astiasaran, I. & Wink, M. (2018). Bioaccessibility and biological activity of *Melissa officinalis*, *Lavandula latifolia* and *Origanum vulgare* extracts: Influence of an *in vitro* gastrointestinal digestion. *Journal of Functional Foods*, 44, 146-154.

Geisel, P.M., Unruh, C.L. & Lawson, P.M., (2004). Lavenders for California gardens. ANR Publication 8132.

Giuliani, C., Bottonia, M., Ascrizzic, R., Milania, F., Spadaf, A., Papinie, A., Flaminic, G. & Gelsomina, F. (2023). Insight into micromorphology and phytochemistry of *Lavandula angustifolia* Mill. from Italy. *South African Journal of Botany*, 153, 83-93

Gonzalez-Coloma, A., Delgado, F., Rodilla, J. M., Silva, L., Sanz, J. & Burillo, J. (2011). Chemical and biological profiles of *Lavandula luisieri* essential oils from western Iberia Peninsula populations. *Biochemical Systematics and Ecology*, 39, 1-8.

Gutierrez, J., Barry-Ryan, C. & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. *International Journal of Food Microbiology*, 124, 91-97

Hajhashemi, V., Ghannadi, A. & Sharif, B. (2003). Antiinflammatory and analgesic properties of the leaf extracts and essential oil of *Lavandula angustifolia* Mill. *Journal of Ethnopharmacology*, 89 (1), 67-71.

Hasanin, M.S., Emam, M., Soliman, M.M.H., Latif, R.R.A., Salem, M.M.M. & El Raey, M.A. (2020). Green silver nanoparticles based on *Lavandula coronopifolia* aerial parts extract against mycotic mastitis in cattle, *Microchemical Journal*, 153, 104458.

Hassiotis, C.N. (2010). Chemical compounds and essential oil release through decomposition process from *Lavandula stoechas* in Mediterranean region. *Biochemical Systematics and Ecology*, 38, 493-501

Herraiz-Péñalver, D., Cases M.A., Varela F., Navarrete P., Sanchez-Vioque R. & Usano-Alemany, J. (2013). Chemical characterization of *Lavandula latifolia* Medik. essential oil from Spanish wild populations. *Biochemical Systematics and Ecology*, 46, 59-68.

Hyldgaard, M., Mygind, T. & Meyer, R.L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. *Frontiers in Microbiology*, 3, 12

Imene, L. (2012). Etude des activités antioxydante et antifongique de l'huile essentielle des fleurs sèches de *Lavandula officinalis*: application aux moisissures des légumes secs. *Revue Nature & Technologie*, 7, 44 - 52

Ion N., Roman Gh.V., Ion, V., Epure L.I., Toader M., Băsa A.Gh. (2008). *Specii de plante medicinale și aromatice melifere*, Editura Alpha MDN, Buzău

Julio, LF, Martin, L, Munoz, R., Mainar, A.M., Urieta, J.S., Sanz, J., Burillo, J. & Gonzales Coloma, A. (2014). Comparative chemistry and insect antifeedant effects of conventional (Clevenger and Soxhlet) and supercritical extracts (CO₂) of two *Lavandula luisieri* populations. *Industrial Crops and Products*, 58, 25-30.

Kara, N. & Baydar, H. (2013). Determination of lavender and lavandin cultivars (*Lavandula* sp.) containing high quality essential oil in Isparta, Turkey. *Turkish Journal of Field Crops*, 18(1), 58-65.

Karapandzova, M., Cvetkovikj, I., Stefkov, G., Stoimenov, V., Crvenov, M. & Kulevanova, S. (2012). The influence of duration of the distillation of fresh and dried flowers on the essential oil composition of lavandin cultivated in Republic of Macedonia. *Macedonian Pharmaceutical Bulletin*, 58 (1,2), 31 - 38.

Kaya, E.S.K. & Soylu, S. (2010). Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (*Tetranychus cinnabarinus* Boisd.) (Acarina: Tetranychidae). *Industrial Crops and Products*, 31, 107-112.

Kivrak, S., (2018). Essential oil composition and antioxidant activities of eight cultivars of Lavender and Lavandin from western Anatolia. *Industrial Crops & Products*, 117, 88-96.

Koniger, H. (1997). US Patent 5, 641, 481.

Koziol, A., Stryjewska, A., Librowski, T., Salat, K., Gawel, M., Moniczewski, A. & Lochynski, S. (2015). An Overview of the Pharmacological Properties and Potential Applications of Natural Monoterpenes. Mini-Rev. *Journal of Medicinal Chemistry*, 14, 1156-1168.

Krasteva, V., Yankova, M. & Ivanova, A., (2021). Efficacy of lavender oil as an anesthetic for juvenile European catfish 94 (*Silurus glanis* L.). *Journal of Mountain Agriculture on the Balkans*, 24 (3), 23-39

Kunicka-Styczynska, A. M., Kalemba, D. & Sikora, D. (2009). Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. *Journal of Applied Microbiology*, 107, 1903-1911.

Kunicka-Styczynska, A., Smigelski, K., Prusinowska, R., Rajkowska, K., Kusmider, B. & Sikora, M. (2015). Preservative activity of lavender hydrosols in moisturizing body gels. *Letters in Applied Microbiology*, 60(1), 27-32

Lakusic, B., Lakusic, D., Ristic, M., Marcetic, M. & Slavkovska, V. (2014). Seasonal Variations in the Composition of the Essential Oils of *Lavandula angustifolia* (Lamiaceae). *Natural Product Communications*, 9(6), 859-62.

Laza A., Rácz G. (1975). Plante medicinale și aromatice, Editura Ceres, București

Lesage-Meessen, L., Bou, M., Sigoillot, J.C., Faulds, C.B. & Lomascolo P. (2015). A Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. *Applied Microbiology and Biotechnology*, 99, 3375-3385

Lis-Balchin, M. & Hart, S. (1999). Studies on the mode of action of the essential oil of lavender (*Lavandula*

angustifolia P. Miller). *Phytotherapy Research*, 13(6), 540-2.

Luchian V., Lagunovschi-Luchian V., Săvulescu E., Răsină A.D., Sin Gh., Bădulescu L. A. (2017). Plantele medicinale, aromatice și tinctoriale. Sănătate și frumusețe, Editura Alpha MDN, Buzău

Lyczko, J., Jalošynski, K., Surma, M., Masztalerz, K. & Szumny, A. (2019). Hs-spme analysis of true lavender (*Lavandula angustifolia* Mill.) leaves treated by various drying methods. *Molecules*, 24, 764.

Malcolm, B.J., Tallian, K. (2018). Essential oil of lavender in anxiety disorders: Ready for prime time? *Mental Health Clinician*, 7, 147–155.

Meftahizade, H., Moradkhani, H., Fayazi Barjin, A. & Naseri, B. (2011). Application of *Lavandula officinalis* L. antioxidant of essential oils in shelf life of confectionary, *African Journal of Biotechnology*, 10 (2), 196-200.

Mendez-Tovar, I., Novak, J., Sponza, S., Herrero, B. & AsensioS-Manzanera M.C., (2016). Variability in essential oil composition of wild populations of Labiatae species collected in Spain. *Industrial Crops and Products*, 79, 18- 28

Messaoud, C., Chograni, H. & Boussaid, M. (2012). Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild *Lavandula* L. species. *Natural Product Research*, 26, 1976–1984.

Munoz-Bertomeu, J., Arrillaga, I. & Segura, J. (2007). Essential oil variation within and among natural populations of *Lavandula latifolia* and its relation to their ecological areas. *Biochemical Systematics and Ecology*, 35(8), 479–488

Muntean L.S., Tămaș M., Muntean S., Muntean L., Duda M.M., Vărban D.I., Florian S. (2007). Tratat de plante medicinale cultivate și spontane, Editura RISOPRINT, Cluj-Napoca, p. 386-395

Muntean, L. S. (1990). Plante medicinale și aromatice cultivate în România, Cluj, Editura Dacia

Muntean, L.S. (1996). Cultura plantelor medicinale și aromatice, Editura Dacia, Cluj-Napoca

Naseef, H., Al-Maharik, N., Rabba, A.K., Sharifi-Rad, M., Hawash, M. & Jaradat, N. (2022). Phytochemical characterization and assessments of antimicrobial, cytotoxic and anti-inflammatory properties of *Lavandula coronopifolia* Poir. volatile oil from Palestine, *Arabian Journal of Chemistry*, 15(9), 104069.

Nieto, G. (2017). Biological Activities of Three Essential Oils of the *Lamiaceae* Family. *Medicines*, 4, 63

Patil S.M., Al-Mutairi K.A., Firdose N., Ramu R., Reshma M.M., Ashwini P. (2022). Pharmacoinformatics based screening discovers swertianolin from *Lavandula angustifolia* as a novel neuromodulator targeting epilepsy, depression, and anxiety, *South African journal of Botany*, Volume 149, September 2022, Pages 712-730

Păun E., Mihalea A., Dumitrescu A., Verzea M., Coșcariu O. (1988). Tratat de plante medicinale și aromatice cultivate, Vol. II, Editura Academiei Republicii Socialiste România, București

Pecanha, D.A., Mendonça Freitas, M.S., Vieira, M.E., Morais Cunha, J. & De Jesus, A.C., (2021). Phosphorus fertilization affects growth, essential oil yield and quality of true lavender in Brazil. *Industrial Crops & Products*, 170, 113803.

Perrucci, S., Macchioni, G., Cioni, P.C., Flamini, G., Morelli, I. & Taccini, F. (1996). The activity of volatile compounds from *Lavandula angustifolia* against *Psoroptes cuniculi*. *Phytotherapy Research*, 10, 5–8.

Pinto, J.E.B.P., Cardoso, J.C.W., De Castro, E.M., Bertolucci, S.K.V., De Melo, L.A. & Dousseau, S. (2007). Morphophysiological aspects and essential oil content in brazilian-lavender as affected by shadowing. *Horticultural Brasileira*, 25(2), 210-214.

Plotto, A. & Roberts, D. (2001). Aroma quality of lavender water: A comparative study. *Perfum & Flavorist*, 26, 44–64.

Preedy, V.R. (2016). *Essential Oils in Food Preservation, Flavor and Safety*, Elsevier Inc.: London, UK

Prisăcaru C., Burlacu, A.I. (2009). Plante medicinale și toxice. Ediția a 2-a revizuită și adăugită, Editura Tehnopress, Iași

Rasheed, H.M., Farooq, U., Bashir, K., Wahid, F., Khan, T., Khusro, A., Gajdacs, M., Alghamdi, S., Alsaiari, A.A., 95 Almehmadi, M., Afzal, S. & Sahibzada, M.U.K. (2023). Isolation of oleanolic acid from *Lavandula stoechas* and its potent anticancer properties against MCF-7 cancer cells via induced apoptosis. *Journal of King Saud University – Science*, 35 (2), 102454

Raut, J.S. & Karuppayil, S.M. (2014). A status review on the medicinal properties of essential oils, *Industrial Crops and Products*, 62, 250–264.

Renaud, E.N.C., Charles, D.J. & Simon, J.E. (2001). Essential oil quantity and composition from 10 cultivars of organically grown Lavender and Lavandin. *Journal of Essential Oil Research*, 13, 269–273

Repici, M. & Giorgini, F. (2019). DJ-1 in Parkinson's disease: clinical insights and therapeutic perspectives. *Journal of Clinical Medicine*, 8 (9), 1377.

Rîșca I.-M. (2016). Fitoterapie, Editura Universității „Ștefan cel Mare”, Suceava

Rodrigues, N., Malheiro, R., Casal, S., Asensio-S-Manzanera, M.C., Bento, A. & Pereira, J.A. (2012). Influence of spike lavender (*Lavandula latifolia* Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating. *Food and Chemical Toxicology*, 50(8), 2894-901.

Saeed, F., Afzaal, M., Ahtisham, Raza M., Rasheed, A., Hussain, M., Nayik, G.A. & Ansari, M.J., (2023). Chapter 4 - Lavender essential oil: Nutritional, compositional, and therapeutic insights, Editor(s): Gulzar Ahmad Nayik, Mohammad Javed Ansari, Essential Oils, Academic Press, 85-10.

Said, A.L., Zahnane, K., Ghalbane, I., El Messoussi, S., Romane A. & Cavaleiro, C. (2015). Chemical composition and antibacterial activity of *Lavandula coronopifolia* essential oil against antibiotic-resistant bacteria. *Natural Product Research*, 29 (6), 582-585.

Salata, A., Buczkowska, H. & Nurzynska-Wierdak, R. (2020). Yield, Essential Oil Content, and Quality Performance of *Lavandula angustifolia* Leaves, as

Affected by Supplementary Irrigation and Drying Methods. *Agriculture*, 10, 590

Sarkic, A. & Stappen, I. (2018). Essential oils and their single compounds in cosmetics-a critical review. *Cosmetics*, 5 (11), 1-9

Sertkaya, E., Kaya, K. & Soylu, S. (2010). Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (*Tetranychus cinnabarinus* Boisd.) (Acarina: Tetranychidae). *Industrial Crops and Products*, 31(1), 107-112.

Shafagha, A., Salimi, F. & Amani-Hooshyar, V. (2012). Phytochemical and antimicrobial activities of *Lavandula officinalis* leaves and stems against some pathogenic microorganisms, *Journal of Medicinal Plants Research*, 6(3), 455-460.

Shafee-Kandjani, A., Khalili, M., Malek, A., Farhang, S., Ranjbari, Y., Yeganeh Khalili, Y. (2023). The therapeutic effect of the extracts of *Lavandula angustifolia* and *Dracocephalum ruyschiana* besides sertraline on patients with mild to moderate depression: A double-blind controlled trial, *Phytomedicine Plus*, Volume 3, Issue 2, 100430, ISSN 2667-0313

Sidorenko, O.D., Gorbuniova, E.O. & Voronina, E.P. (1995). Allelopathic action of lavender on soil micro-organisms. *Bulletin of the Russian Academy of Sciences*, 22, 101-3.

Stănescu U., Hăncianu M., Cioancă O., Aprotosoaie A.C., Miron A. (2014). Plante medicinale de la A la Z, Editura Polirom, Iasi

Tardugno, R., Serio, A., Pellati, F., D'Amato, S., Chaves Lopez, C., Bellardi, M.G., Di Vito, M., Savini, V., Paparella, A. & Benvenuti, S. (2019). *Lavandula x intermedia* and *Lavandula angustifolia* essential oils: phytochemical composition and antimicrobial activity against foodborne pathogens. *Natural Product Research*, 33, 3330-3335

Villalpando, M., Gomez-Hurtado, M.A., Rosas G. & SaavedraMolina A. (2022). Ag nanoparticles synthesized using *Lavandula angustifolia* and their cytotoxic evaluation in yeast, *Materials Today Communications*, 31, 103633.

Warren, C.B., Marin, A.B. & Butler, J.F. (1997). Use of unsaturated aldehyde and alkanol derivatives for their mosquito repellency properties. *US Patent* No. 5, 665,781.

Woronuk, G., Demissie, Z., Rheault, M. & Mahmoud, S. (2011). Biosynthesis and therapeutic properties of lavandula essential oil constituents. *Planta Medica*, 77(1), 7-15.

Wren, R.C. (1988). *Potter's New Cyclopaedia of Botanical Drugs and Preparations*, Revised edn, Williamson, E.M. and Evans, F.J. (eds), C.W. Daniel Co. Ltd., Saffron Walden

Yazdani, E., Sendi, J.J., Aliakbar, A. & Senthil-Nathan, S. (2013). Effect of *Lavandula angustifolia* essential oil against lesser mulberry pyralid *Glyphodes pyloalis* Walker (Lep: Pyralidae) and identification of its major derivatives. *Pesticide Biochemistry and Physiology*, 107(2), 250-257.

Yigit, N.O., Metin, S., Didinen, B.S., Didinen, H. & Ozmen, O. (2022). Effect of lavender (*Lavandula angustifolia*) and laurel (*Laurus nobilis*) essential oils as anesthetics in rainbow trout (*Oncorhynchus mykiss*), *Aquaculture*, 557, 738328.

Yohalem, D. & Passey, T. (2011). Amendment of soils with fresh and post-extraction lavender (*Lavandula angustifolia*) and lavandin (*Lavandula x intermedia*) reduce inoculum of *Verticillium dahliae* and inhibit wilt in strawberry, *Applied Soil Ecology*, 49, 187-196

Zeinab, N.L., Hajimonfarednejad, M., Riasatian, M., Abolhassanzadeh, Z., Iraji, A., Vojoud, M., Heydari, M. & Shams M. (2020). Efficacy of inhaled *Lavandula angustifolia* Mill. Essential oil on sleep quality, quality of life and metabolic control in patients with diabetes mellitus type II and insomnia, *Journal of Ethnopharmacology*, 251, 112560.

Zuzarte, M., Gonçalves, M.J., Cruz, M.T., Cavaleiro, C., Canhoto, J., Vaz, S., Pinto, E., L. Salgueiro, L. (2012). *Lavandula luisieri* essential oil as a source of antifungal drugs, *Food Chemistry*, Volume 135, Issue 3, 2012, Pages 1505-1510, ISSN 0308-8146, <https://www.mdpi.com/2223-7747/12/2/357>

<https://in.pinterest.com/pin/12596073951347604/>

https://www.pennybio.com/en/content/186-everything-on-geraniol?srsltid=AfmBOoqGx3W6DmyJobRjg8kWJKCsIXYELY8pIQ07aQjgotx1AH_zhhpRw

<https://alchetron.com/Linalyl-acetate>

<https://sk.wikipedia.org/wiki/Linalool>

<https://mymediterraneangarden.com/types-of-lavender/>

<https://www.pinterest.com/pin/140806232692625/>